中考数学专题圆的切线习题_第1页
中考数学专题圆的切线习题_第2页
中考数学专题圆的切线习题_第3页
中考数学专题圆的切线习题_第4页
中考数学专题圆的切线习题_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学专题圆的切线精华习题中考数学专题圆的位置关系第一部分真题精讲【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tanC=,求⊙O的直径.【解析】(1)证明:联结OD.∵D为AC中点,O为AB中点,∴OD为△ABC的中位线.∴OD∥BC.∵DE⊥BC,∴∠DEC=90°.∴∠ODE=∠DEC=90°.∴OD⊥DE于点D.∴DE为⊙O的切线.(2)解:联结DB.∵AB为⊙O的直径,∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°.∵D为AC中点,∴AB=AC.在Rt△DEC中,∵DE=2,tanC=,∴EC=.由勾股定理得:DC=.在Rt△DCB中,BD=.由勾股定理得:BC=5.∴AB=BC=5.∴⊙O的直径为5.【例2】已知:如图,⊙O为的外接圆,为⊙O的直径,作射线,使得平分,过点作于点.(1)求证:为⊙O的切线;(2)若,,求⊙O的半径.【解析】证明:连接.∵,∴.∵,∴.∴.∴∥.∵,∴.∴.∵是⊙O半径,∴为⊙O的切线.(2)∵,,,∴.由勾股定理,得.∴.∵是⊙O直径,∴.∴.又∵,,∴.在Rt△中,==5.∴⊙O的半径为.【例3】已知:如图,点是⊙的直径延长线上一点,点在⊙上,且(1)求证:是⊙的切线;(2)若点是劣弧上一点,与相交于点,且,,求⊙的半径长.【解析】(1)证明:连接.∵,∴.∴是等边三角形.∴.∵,∴∴.∴.又∵点在⊙上,∴是⊙的切线.(2)解:∵是⊙的直径,∴.在中,,∴设则,∴.∴.∵,∴∽.∴.∵,∴.∴【例4】如图,等腰三角形中,,.以为直径作⊙O交于点,交于点,,垂足为,交的延长线于点.(1)求证:直线是⊙O的切线;(2)求的值.【解析】(1)证明:如图,连结,则.∴.∵,∴.∴是的中点.∵是的中点,∴.∵于F.∴.∴是⊙O的切线.(2)连结,∵是直径,∴.∴.∴.设,则.在中,.在中,.∴.解得.即.在中.∴.【例5】如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD=5,求AD的长.【解析】结论:与相切证明:连接∵点、在圆上,∴∵四边形是平行四边形,∴∴∵∴∴在和∴∴∵与相切∴∴∴∴与相切(2)∵,四边形是平行四边形∴,,∵∴∴∴∴∴.如图△ABC中,AB=AC,点O是BC的中点,与AB切于点D,求证:与AC也相切。如图,中,AB=AC,=,O、D将BC三等分,以OB为圆心画,求证:与AC相切。第二部分发散思考【思考1】如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.【思考2】已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径等于4,,求CD的长.【思考3】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.【思路分析】这是一道去年北京中考的原题,有些同学可能已经做过了。主要考点还是切线判定,等腰三角形性质以及解直角三角形,也不会很难。放这里的原因是让大家感受一下中考题也无非就是如此出法,和我们前面看到的那些题是一个意思。【思考4】如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为上一点,CE⊥AD于E.求证:AE=BD+DE.【思路分析】前面的题目大多是有关切线问题,但是未必所有的圆问题都和切线有关,去年西城区这道模拟题就是无切线问题的代表。此题的关键在于如何在图形中找到和BD相等的量来达到转化的目的。如果图形中所有线段现成的没有,那么就需要自己去截一段,然后去找相似或者全等三角形中的线段关系。【思考5】如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.求证:DE是⊙O的切线;若AB=6,BD=3,求AE和BC的长.【思路分析】又是一道非常典型的用角证平行的题目。题目中虽未给出AC评分角EAD这样的条件,但是通过给定CE=CF,加上有一个公共边,那么很容易发现△EAC和△CAF是全等的。于是问题迎刃而解。第二问中依然要注意找到已知线段的等量线段,并且利用和,差等关系去转化。第三部分思考题解析【思考1解析】.∴∠OBD=90°.∴直线BD与⊙O相切.(2)解:∵∠D=∠ACB,,∴.在Rt△OBD中,∠OBD=90°,OB=4,,∴,.∴.OBGEOBGECMAF1231)证明:连结,则.∴.∵平分.∴.∴.∴.∴.在中,,是角平分线,∴.∴.∴.∴.∴与相切.(2)解:在中,,是角平分线,∴.∵,∴.在中,,∴.设的半径为,则.∵,∴.∴.∴.解得.∴的半径为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论