河北省保定市第十七中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第1页
河北省保定市第十七中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第2页
河北省保定市第十七中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第3页
河北省保定市第十七中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第4页
河北省保定市第十七中学2024届数学八年级下册期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市第十七中学2024届数学八年级下册期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知|a+1|+=0,则b﹣1=()A.﹣1 B.﹣2 C.0 D.12.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<23.下列四个选项中,错误的是()A.=4 B.=4 C.(﹣)2=4 D.()2=44.下列各组多项式中,没有公因式的是()A.ax﹣bx和by﹣ay B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b25.下列二次根式①,②,③,④,能与合并的是()A.①和② B.②和③ C.①和④ D.③和④6.若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为()A.0 B.2 C.0或2 D.0或﹣27.漳州市政府为了鼓励市民绿色出行,投资了一批城市公共自行车,收费如下:第1小时内免费,1小时以上,每半小时收费0.5元(不到半小时按半小时计).马小跳刷卡时显示收费1.5元,则马小跳租车时间x的取值范围为()A.1<x≤1.5 B.2<x≤2.5 C.2.5<x≤3 D.3<x≤48.目前,世界上能制造出的最小晶体管的长度只有米,将用科学记数法表示为().A. B. C. D.9.如图,图中的小正方形的边长为1,到点A的距离为5的格点的个数是()A.7 B.6 C.5 D.410.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.2种 B.4种 C.6种 D.无数种11.甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是()A.甲 B.乙 C.丙 D.丁12.已知△ABC的三边分别是a,b,c,且满足|a-2|++(c-4)2=0,则以a,b,c为边可构成()A.以c为斜边的直角三角形 B.以a为斜边的直角三角形C.以b为斜边的直角三角形 D.有一个内角为的直角三角形二、填空题(每题4分,共24分)13.若﹣1的整数部分是a,小数部分是b,则代数式a2+2b的值是_____.14.使得二次根式2x+1有意义的x的取值范围是.15.已知:AB=2m,CD=28cm,则AB:CD=_____.16.在中,若的面积为1,则四边形的面积为______.17.一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).18.如图,在正方形ABCD的外侧,作等边△ADE,则∠EBD=________.三、解答题(共78分)19.(8分)如图,一次函数y=x+4的图像与反比例函数(k为常数且k≠0)的图像交于A(-1,a),B(b,1)两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且,求点P的坐标.20.(8分)如图,在直角△ABC中,∠BAC=90°,AB=8,AC=1.(1)尺规作图:在BC上求作一点P,使点P到点A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)在(1)的条件下,连接AP,求△APC的周长.21.(8分)先化简,再求值:;其中a=.22.(10分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。(1)计划到2020年底,全省5G基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。23.(10分)已知关于的一元二次方程(1)若该方程有两个实数根,求的取值范围;(2)若方程的两个实数根为,且,求的值.24.(10分)对于实数、,定义一种新运算“※”为:.例如:,.(1)化简:.(2)若关于的方程有两个相等的实数根,求实数的值.25.(12分)已知长方形的长,宽.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.26.计算:(1);(2)(﹣3)×.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据非负数的性质求出a、b的值,然后计算即可.【详解】解:∵|a+1|+=0,∴a+1=0,a-b=0,解得:a=b=-1,∴b-1=-1-1=-1.故选:B.【点睛】本题考查了非负数的性质——绝对值、算术平方根,根据两个非负数的和为0则这两个数都为0求出a、b的值是解决此题的关键.2、D【解析】

直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时,,解得0<k<2,综上所述,0≤k<2。故选D3、D【解析】

根据二次根式的性质与乘方的意义,即可求得答案,注意排除法在解选择题中的应用.【详解】解:A、=4,正确,不合题意;B、=4,正确,不合题意;C、(﹣)2=4,正确,不合题意;D、()2=16,故原式错误,符合题意;故选D.【点睛】此题考查了二次根式的性质以及乘方的意义.此题难度不大,注意掌握二次根式的性质与化简是解此题的关键.4、D【解析】

直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【详解】A、ax﹣bx=x(a﹣b)和by﹣ay=﹣y(a﹣b),故两多项式的公因式为:a﹣b,故此选项不合题意;B、3x﹣9xy=3x(1﹣3y)和6y2﹣2y=﹣2y(1﹣3y),故两多项式的公因式为:1﹣3y,故此选项不合题意;C、x2﹣y2=(x﹣y)(x+y)和x﹣y,故两多项式的公因式为:x﹣y,故此选项不合题意;D、a+b和a2﹣2ab+b2=(a﹣b)2,故两多项式没有公因式,故此选项符合题意;故选:D.【点睛】此题主要考查了公因式,正确把握确定公因式的方法是解题关键.5、C【解析】

先化简各个二次根式,根据只有同类二次根式才能合并即可得出结果.【详解】解:,,,,其中、与是同类二次根式,能与合并;故选:C.【点睛】本题考查了二次根式的化简和同类二次根式的概念,属于基础题,熟练掌握相关知识是解题的关键.6、C【解析】

先依据平方根的定义和性质求得a,b的值,然后依据有理数的加法法则求解,再求立方根即可解答【详解】∵(﹣4)2=16,∴a=±4,∵b的一个平方根是2,∴b=4,当a=4时,∴a+b=8,∴8的立方根是2,当a=﹣4时,∴a+b=0,∴0的立方根是0,故选:C.【点睛】此题考查了平方根和立方根,解题关键在于求出a,b的值7、B【解析】

根据题意,可以列出相应的不等式组,从而可以求得x的取值范围.【详解】由题意可得,,解得,2<x≤2.5,故选B.【点睛】本题考查一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的不等式组,注意题目中每半小时收费0.5元,也就是说每小时收费1元.8、B【解析】

根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,可得到答案【详解】解:∵∴将用科学记数法表示为故选B【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值9、B【解析】

根据勾股定理、结合图形解答.【详解】解:∵(5∴能够成直角三角形的三边应该是1、2、5,

∴到点A的距离为5的格点如图所示:共有6个,故选:B.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a210、D【解析】

平行四边形的两条对角线交于一点,这个点是平行四边形的对称中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.【详解】∵平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分平行四边形的面积,∴这样的折纸方法共有无数种.故选D.【点睛】本题主要考查平行四边形的性质,掌握平行四边形是中心对称图形,是解题的关键.11、D【解析】

根据方差的定义,方差越小数据越稳定.【详解】∵0.02<0.03<0.05<0.11,∴丁的成绩的方差最小,∴当天这四位运动员“110米跨栏”的训练成绩最稳定的是丁。故选:D.【点睛】此题考查方差,解题关键在于掌握其定义12、B【解析】

利用非负数的性质求得a、b、c的数值,利用勾股定理的逆定理判定三角形的形状即可.【详解】解:由题意可得:a=,b=2,c=4,∵22+42=20,()2=20,即b2+c2=a2,所以△ABC是以a为斜边的直角三角形.故选B.【点睛】本题考查了非负数的性质和勾股定理的逆定理,根据非负数的性质求得a、b、c的值是解决此题的关键.二、填空题(每题4分,共24分)13、1+2【解析】

先估算出的范围,再求出a,b的值,代入即可.【详解】解:∵16<23<25,∴1<<5,∴3<﹣1<1.∴a=3,b=﹣1.∴原式=32+2(﹣1)=9+2﹣8=1+2.故答案为:1+2.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数的性质是解题的关键.14、x≥﹣1【解析】试题分析:根据被开方数大于等于0,可得2x+1≥0,解得x≥﹣12考点:二次根式有意义的条件15、50:7【解析】

先将2m转换为200cm,再代入计算即可.【详解】∵AB=2m=200cm,CD=28cm,∴AB:CD=200:28=50:7.故答案为50:7.【点睛】本题考查比例线段,学生们掌握此定理即可.16、1【解析】

S△AEF=1,按照同高时,面积与底成正比,逐次求解即可.【详解】S△AEF=1,DF=2AF,∴S△DEF=2,∵CE=2AE,∴S△DEC=6,∴S△ADC=9,∵BD=2DC,∴S△ABD=18,∵DF=2AF,∴S△BFD=12,∴S四边形BDEF=12+2=1.【点睛】本题考查的是图象面积的计算,主要依据同高时,面积与底成正比,逐次求解即可.17、(30﹣10)【解析】

AB的黄金分割点有两个,一种情况是AC<BC,一种是AC>BC,当AC<BC时走的路程最小,由此根据黄金分割的意义进行求解即可.【详解】如图所示:则,即(20−AC):20=(−1):2,解得AC=30−10.∴他应至少再走30−10米才最理想,故答案为:30−10.【点睛】本题考查黄金分割的知识,熟练掌握黄金分割比例即可解答.18、30°【解析】分析:判断△ABE是顶角为150°的等腰三角形,求出∠EBA的度数后即可求解.详解:因为四边形ABCD是正方形,所以AB=AD,∠BAD=90°,∠ABD=45°.因为△ADE是等边三角形,所以AD=AE,∠DAE=60°,所以AB=AE,∠BAE=150°,所以∠EBA=(180°-150°)=15°,所以∠EBD=∠ABD-∠EBA=45°-15°=30°.故答案为30°.点睛:本题考查了正方形和等边三角形的性质,正方形的四边都相等,四个角都是直角,每一条对角线平分一组对角.三、解答题(共78分)19、(1);(2)点P(-6,0)或(-2,0).【解析】

(1)把A点坐标代入直线解析式求出a的值,再把A(-1,3)代入反比例函数关系式中,求出k的值即可;(2)分别求出B、C的坐标,设点P的坐标为(x,0),根据列出方程求解即可.【详解】(1)把点A(-1,a)代入y=x+4,得a=3,∴A(-1,3),∴k=-3,∴反比例函数的表达式为y=-;(2)把B(b,1)代入反比例函数y=-,解得:b=-3,∴B(-3,1),当y=x+4=0时,得x=-4,∴点C(-4,0),设点P的坐标为(x,0),∵S△AOB=S△AOC-S△BOC=×4×3-×4×1=6-2=4,S△ACP=S△AOB,∴×3×│x-(-4)│=×4=3,解得x1=-6,x2=-2,∴点P(-6,0)或(-2,0).【点睛】本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.20、(1)见解析(2)11【解析】

(1)作线段AB的垂直平分线交BC于点P,点P即为所求;(2)由作图可知:PA=PB,可证△PAC的周长=PA+PC+AC=PB+PC+AC=BC=BC+AC.【详解】(1)点P即为所求;(2)在RtABC中,AB=8,AC=1,∠BAC=90°,∴BC==10,由作图可知:PA=PB,∴△PAC的周长=PA+PC+AC=PB+PC+AC=BC=BC+AC=10+1=11.【点睛】本题考查作图﹣复杂作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、【解析】

先将分式化简,然后代入即可.【详解】解:当x=−1时原式.【点睛】本题主要考查分式方程的化简,熟练分式方程化简步骤是解答此题的关键.22、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.【解析】

(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)由题意可得:到2020年底,全省5G基站的数量是(万座).答:到2020年底,全省5G基站的数量是6万座.(2)设年平均增长率为,由题意可得:,解得:,(不符合,舍去)答:20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论