




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市温州实验中学2024年八年级下册数学期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式A.x⩾3 B.x⩾0 C.x⩾1 D.x⩽12.如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=()A.1.5 B.3 C.4 D.53.如图,在正方形中,分别以点,为圆心,长为半径画弧,两弧相交于点,连接,得到,则与正方形的面积比为()A.1:2 B.1:3 C.1:4 D.4.已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1,2)在这个反比例函数上,a的值可以是(
)A.0 B.1 C.2 D.35.若是一个完全平方式,则k的值是()A.8 B.-2 C.-8或-2 D.8或-26.已知菱形的两条对角线长分别为6和8,则它的周长为()A.10 B.14 C.20 D.287.实数a,b在数轴上的位置如图所示,则化简a2﹣b2﹣A.2b B.2a C.2(b﹣a) D.08.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是()A. B. C. D.9.已知四边形ABCD,有下列四组条件:①AB//CD,AD//BC;②AB=CD,AD=BC;③AB//CD,AB=CD;④AB//CD,AD=BC.其中不能判定四边形ABCD为平行四边形的一组条件是()A.① B.② C.③ D.④10.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是()A. B.C. D.11.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5 B.8 C.10.5 D.1412.如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是()A.当销售量为4台时,该公司赢利4万元 B.当销售量多于4台时,该公司才开始赢利C.当销售量为2台时,该公司亏本1万元 D.当销售量为6台时,该公司赢利1万元二、填空题(每题4分,共24分)13.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.14.如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.15.为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)16.如图,在▱ABCD中(AD>AB),用尺规作图作射线BP交AD于点E,若∠D=50°,则∠AEB=___度.17.如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,要使四边形ABCD为矩形,则需要添加的条件是_______(只填一个即可).18.四边形的外角和等于.三、解答题(共78分)19.(8分)已知抛物线与轴交于两点,与轴交于点.(1)求的取值范围;(2)若,直线经过点,与轴交于点,且,求抛物线的解析式;(3)若点在点左边,在第一象限内,(2)中所得到抛物线上是否存在一点,使直线分的面积为两部分?若存在,求出点的坐标;若不存在,请说明理由.20.(8分)如图,点O为等边三角形ABC内一点,连接OA,OB,OC,将线段BO绕点B顺时针旋转60°到BM,连接CM,OM.(1)求证:AO=CM;(2)若OA=8,OC=6,OB=10,判断△OMC的形状并证明.21.(8分)已知,在矩形中,的平分线DE交BC边于点E,点P在线段DE上(其中EP<PD).
(1)如图1,若点F在CD边上(不与点C,D重合),将绕点P逆时针旋转90°后,角的两边PD、PF分别交AD边于点H、G.①求证:;②探究:、、之间有怎样的数量关系,并证明你的结论;(2)拓展:如图2,若点F在CD的延长线上,过点P作,交射线DA于点G.你认为(2)中DF、DG、DP之间的数量关系是否仍然成立?若成立,给出证明,若不成立,请写出它们所满足的数量关系式,并说明理由.22.(10分)如图,DB∥AC,且DB=AC,E是AC的中点.(1)求证:四边形BDEC是平行四边形;(2)连接AD、BE,△ABC添加一个条件:,使四边形DBEA是矩形(不需说明理由).23.(10分)已知:如图,在平面直角坐标系xOy中,A(0,8),B(0,4),点C在x轴的正半轴上,点D为OC的中点.(1)当BD与AC的距离等于2时,求线段OC的长;(2)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线BD的解析式.24.(10分)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线相交于B、C两点(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设B(m,n)(m<0),过点E(0,-1)的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.25.(12分)甲、乙两人在笔直的道路上相向而行,甲骑自行车从地到地,乙驾车从地到地,假设他们分别以不同的速度匀速行驶,甲先出6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离(千米)与甲出发的时间(分)之间的部分函数图象如图.(1)两地相距______千米,甲的速度为______千米/分;(2)直接写出点的坐标______,求线段所表示的与之间的函数表达式;(3)当乙到达终点时,甲还需______分钟到达终点.26.如图,在的方格中,的顶点均在格点上.试按要求画出线段(,均为格点),各画出一条即可.
参考答案一、选择题(每题4分,共48分)1、D【解析】
直接利用图象,观察图像可知,要求y1=x+b在y2=kx+4的下方,包括交点,就得出不等式【详解】解:如图所示:∵一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),∴关于的不等式x+b≤kx+4的解集是:x⩽1.故选择:D.【点睛】此题主要考查了一次函数与一元一次不等式,正确运用数形结合思想是解题关键.2、A【解析】
根据旋转的性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.【详解】由旋转可得,△ABC≌△EDC,∴DE=AB=1.5,故选A.【点睛】本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.3、C【解析】
由作图可得知△BEC是等边三角形,可求出∠ABE=30°,进而可求出△ABE边AB上的高,再根据三角形和正方形的面积公式求出它们的面积比即可.【详解】根据作图知,BE=CE=BC,∴△BEC是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE=∠ABC-∠EBC=90°-60°=30°,设AB=BC=a,过点E作EF⊥AB于点F,如图,则EF=BE=a,∴.故选C.【点睛】此题主要考查了等边三角形的判定以及正方形的性质,熟练掌握有关性质是解题的关键.4、A【解析】根据函数的增减性判断出图象所在象限,进而得出图象上点的坐标特征,将四个选项的数值代入P(a-1,2)验证即可.解:∵反比例函数,在每个象限内y随着x的增大而增大,∴函数图象在二、四象限,∴图象上的点的横、纵坐标异号.A、a=0时,得P(-1,2),故本选项正确;B、a=1时,得P(0,2),故本选项错误;C、a=2时,得P(1,2),故本选项错误;D、a=3时,得P(2,2),故本选项错误.故选A.此题考查了反比例函数图象上点的坐标特征,要熟悉反比例函数的性质,同时要注意数形结合.5、D【解析】
利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵x1+1(k-3)x+15是一个整式的平方,
∴1(k-3)=±10,
解得:k=8或-1.
故选:D.【点睛】考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6、C【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=1.故选:C.【点睛】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.7、A【解析】
由图可知-1<b<0<a<1,由a2=|a|【详解】解:由图可知-1<b<0<a<1,原式=|a|-|b|-|a-b|=a+b-a+b=2b,故选择A.【点睛】本题考查了含二次根式的式子的化简.8、A【解析】
由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.【详解】由于直线y1=kx+b过点A(0,2),P(1,m),则有:解得.∴直线y1=(m−2)x+2.故所求不等式组可化为:mx>(m−2)x+2>mx−2,不等号两边同时减去mx得,0>−2x+2>−2,解得:1<x<2,故选A.【点睛】本题属于对函数取值的各个区间的基本情况的理解和运用9、D【解析】
①由有两组对边分别平行的四边形是平行四边形,可证得四边形ABCD是平行四边形;②由有两组对边分别相等的四边形是平行四边形,可证得四边形ABCD是平行四边形;③由一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,④由已知可得四边形ABCD是平行四边形或等腰梯形.【详解】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判定这个四边形是平行四边形;②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判定这个四边形是平行四边形;③根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知③能判定这个四边形是平行四边形;④由一组对边平行,一组对边相等的四边形不一定是平行四边形,可知④错误;故给出的四组条件中,①②③能判定这个四边形是平行四边形,故选:D.【点睛】此题考查了平行四边形的判定.注意熟记平行四边形的判定定理是解此题的关键.10、B【解析】
先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC==.
∴OM=.
故选:B.【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.11、B【解析】
利用相似三角形的判定与性质得出,求出EC即可.【详解】∵DE∥BC,∴△ADE∽△ABC.∴,即解得:EC=1.故选B.12、A【解析】
利用图象交点得出公司盈利以及公司亏损情况.【详解】解:A、当销售量为4台时,该公司赢利0万元,错误;B、当销售量多于4台时,该公司才开始赢利,正确;C、当销售量为2台时,该公司亏本1万元,正确;D、当销售量为6台时,该公司赢利1万元,正确;故选A.【点睛】此题主要考查了一次函数的应用,熟练利用数形结合得出是解题关键.二、填空题(每题4分,共24分)13、1【解析】试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.试题解析:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=1.考点:1.菱形的判定与性质;2.矩形的性质.14、1【解析】
根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.【详解】解:∵AE的垂直平分线为DG∴AF=EF,∠AFG=∠EFD=90°,DA=DE∵四边形ABCD是平行四边形∴DC∥AB,AD∥BC,DC=AB,∴∠DEA=∠BAE∵AE平分∠BAD交CD于点E∴∠DAE=∠BAE∴在△DEF和△GAF中∴△DEF≌△GAF(ASA)∴DE=AG又∵DE∥AG∴四边形DAGE为平行四边形又∵DA=DE∴四边形DAGE为菱形.∴AG=AD∵AD=4cm∴AG=4cm∵BG=1cm∴AB=AG+BG=4+1=1(cm)故答案为:1.【点睛】本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.15、抽样调查.【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.16、1.【解析】
由平行四边形的性质可知:AD∥BC,推出∠AEB=∠EBC,求出∠EBC即可;【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠D=50°,AD∥BC,由作图可知,BE平分∠ABC,∴∠EBC=∠ABC=1°,∴∠AEB=∠EBC=1°,故答案为1.【点睛】本题考查平行四边形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17、∠DAB=90°.【解析】
根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.【详解】解:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为∠DAB=90°.【点睛】此题主要考查了矩形的判定,关键是掌握矩形的判定定理.18、360°.【解析】
解:n(n≥3)边形的外角和都等于360°.三、解答题(共78分)19、(1)m≠-1;(1)y=-x1+5x-6;(3)点P(,-)或(1,0).【解析】
(1)由于抛物线与x轴有两个不同的交点,可令y=0,则所得方程的根的判别式△>0,可据此求出m的取值范围.
(1)根据已知直线的解析式,可得到D点的坐标;根据抛物线的解析式,可用m表示出A、B的坐标,即可得到AD、BD的长,代入AD×BD=5,即可求得m的值,从而确定抛物线的解析式.
(3)直线PA分△ACD的面积为1:4两部分,即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),即可求解.【详解】解:(1)∵抛物线与x轴有两个不同的交点,
∴△=(m-4)1+11(m-1)=m1+4m+4=(m+1)1>0,
∴m≠-1.
(1)∵y=-x1-(m-4)x+3(m-1)=-(x-3)(x+m-1),
∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
则:D(0,-1),
则有:AD×BD=,
解得:m=1(舍去)或-1,
∴m=-1,
抛物线的表达式为:y=-x1+5x-6①;
(3)存在,理由:
如图所示,点C(0,-6),点D(0,-1),点A(1,0),
直线PA分△ACD的面积为1:4两部分,
即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),
将点H、A的坐标代入一次函数表达式并解得:
直线HA的表达式为:y=x-1或y=x-5②,
联立①②并解得:x=或1,
故点P(,-)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.20、(1)见解析(2)直角三角形,证明见解析【解析】
(1)根据“BO绕点B顺时针旋转60°到BM”可知∠OBM=60°,OB=OM,即可证明△AOB≌△CMB,从而得到答案;(2)由(1)可知AO=CM,根据OB=BM,∠OBM=60°,可知△OBM为等边三角形,从而得到OB=OM,根据勾股定理的逆定理即可得到答案.【详解】(1)证明:∵BO绕点B顺时针旋转60°到BM∴∠OBM=60°,OB=BM,∵△ABC为等边三角形∴∠ABC=60°,AB=CB∴∠ABO+∠OBC=∠CBM+∠OBC=60°∴∠ABO=∠CBM,在△AOB和△CMB中,∴△AOB≌△CMB(SAS),∴AO=CM.(2)△OMC是直角三角形;理由如下:∵BO绕点B顺时针旋转60°到BM∴∠OBM=60°,OB=BM,∴△OBM为等边三角形∴OB=OM=10由(1)可知OA=CM=8在△OMC中,OM2=100,OC2+CM2=62+82=100,∴OM2=OC2+CM2,∴△OMC是直角三角形.【点睛】本题考查的是旋转的性质、等边三角形的性质与判定,全等三角形的判定和勾股定理的逆定理,能够利用全等三角形的性质与判定得出对应边和用勾股定理逆定理判定三角形的形状是解题的关键.21、(1)①详见解析;②,详见解析;(2).详见解析【解析】
(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;
②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=DP,HG=DF,根据DG+DF=DG+GH=DH即可得;
(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD=DP,再证△HPG≌△DPF可得HG=DF,根据DH=DG-HG=DG-DF可得DG-DF=DP.【详解】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,
∴∠PDF=∠ADP=45°,
∴△HPD为等腰直角三角形,
∴∠DHP=∠PDF=45°,
在△HPG和△DPF中,
∵,
∴△HPG≌△DPF(ASA),
∴PG=PF;
②结论:DG+DF=DP,
由①知,△HPD为等腰直角三角形,△HPG≌△DPF,
∴HD=DP,HG=DF,
∴HD=HG+DG=DF+DG,
∴DG+DF=DP;
(2)不成立,数量关系式应为:DG-DF=DP,
如图,过点P作PH⊥PD交射线DA于点H,
∵PF⊥PG,
∴∠GPF=∠HPD=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,
∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,
∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,
∴∠GHP=∠FDP=180°-45°=135°,
在△HPG和△DPF中,
∵
∴△HPG≌△DPF,
∴HG=DF,
∴DH=DG-HG=DG-DF,
∴DG-DF=DP.【点睛】此题考查等腰直角三角形的性质、全等三角形的判定与性质、矩形的性质的综合运用,灵活运用全等三角形的判定与性质将待求证线段关系转移至其他两线段间关系是解题的关键.22、(1)见解析;(2)AB=BC.【解析】
(1)证明DB=EC.DB∥EC即可;(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.【详解】(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB=EC.又∵DB∥EC,∴四边形DBCE是平行四边形.(2)如图,连接AD,BE,添加AB=BC.
理由:∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.故答案为:AB=BC.【点睛】此题考查了平行四边形的判定与矩形的判定,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.23、(1);(2)y=-x+1.【解析】
(1)作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;(2)根据平行四边形的性质可得出DE⊥OC,利用等腰三角形的三线合一可得出△OEC为等腰三角形,结合OE⊥AC可得出△OEC为等腰直角三角形,根据等腰直角三角形的性质可得出点C、D的坐标,由点B、D的坐标,利用待定系数法即可求出直线BD的解析式.【详解】(1)如图1,作BF⊥AC于点F,取AB的中点G,则G(0,6),∵BD∥AC,BD与AC的距离等于2,∴BF=2,∵在Rt△ABF中,∠AFB=90°,AB=1,点G为AB的中点,∴FG=BG=AB=2,∴△BFG是等边三角形,∠ABF=60°,∴∠BAC=30°,设OC=x,则AC=2x,根据勾股定理得:OA==x,∵OA=8,∴x=,∵点C在x轴的正半轴上,∴点C的坐标为(,0);(2)如图:∵四边形ABDE为平行四边形,∴DE∥AB,∴DE⊥OC,∵点D为OC的中点,∴△OEC为等腰三角形,∵OE⊥AC,∴△OEC为等腰直角三角形,∴∠C=15°,∴点C的坐标为(8,0),点D的坐标为(1,0),设直线BD的解析式为y=kx+b(k≠0),将B(0,1)、D(1,0)代入y=kx+b,得:,解得:,∴直线BD的解析式为y=-x+1.【点睛】本题考查了三角形的中位线、待定系数法求一次函数解析式、等腰直角三角形、平行四边形的性质以及勾股定理,解题的关键是:(1)牢记30°角所对的直角边为斜边的一半;(2)根据平行四边形的性质结合等腰直角三角形的性质求出点C、D的坐标.24、(1);(2)存在;M点坐标为:(-3,),,;(3)△RFS是直角三角形;证明见详解.【解析】
(1)首先求出C的坐标,然后由C、F两点用待定系数法求解析式即可;(2)因为DM∥OF,要使以M、D、O、F为顶点的四边形为平行四边形,则DM=OF,设M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 潍坊学院《食品酶学》2023-2024学年第二学期期末试卷
- 模电 7-信号的运算和处理学习资料
- 江苏省苏州市常熟一中达标名校2025届第二学期期末统一考试(数学试题理)试题含解析
- 六安职业技术学院《西方文化与近代中国》2023-2024学年第一学期期末试卷
- 南通职业大学《行为矫正》2023-2024学年第一学期期末试卷
- 辽宁传媒学院《分析代数方法选讲》2023-2024学年第一学期期末试卷
- 二零二五广告合同范例大全
- 展会知识产权保护合同范例
- 委托代理采购协议书二零二五年
- 房地产项目顾问合同书二零二五年
- ANPQP概要-主要表单介绍及4M变更流程
- 2023年山东司法警官职业学院招聘考试真题
- 氯乙酸安全技术说明书MSDS
- 农村集体土地租赁合同范本村集体土地房屋租
- 电焊烟尘职业危害培训课件
- 2024年内蒙古通辽新正电工技术服务有限公司招聘笔试参考题库附带答案详解
- 蒙古国的投资环境分析报告
- 《公司法培训》课件
- 印章可疑情况管理制度
- 健康体检重要异常结果管理规范
- 基于单片机的汽车超载控制系统的设计
评论
0/150
提交评论