湖北省武汉市二中学广雅中学2024届八年级数学第二学期期末综合测试试题含解析_第1页
湖北省武汉市二中学广雅中学2024届八年级数学第二学期期末综合测试试题含解析_第2页
湖北省武汉市二中学广雅中学2024届八年级数学第二学期期末综合测试试题含解析_第3页
湖北省武汉市二中学广雅中学2024届八年级数学第二学期期末综合测试试题含解析_第4页
湖北省武汉市二中学广雅中学2024届八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市二中学广雅中学2024届八年级数学第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若a,b为等腰△ABC的两边,且满足|a﹣5|+=0,则△ABC的周长为()A.9 B.12 C.15或12 D.9或122.计算的结果是()A.3 B.﹣3 C.9 D.﹣93.某学校在开展“节约每一滴水”的活动中,从九年级的500名同学中任选出10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表所示:节水量(单位:t)0.511.52同学数(人)2341请你估计这500名同学的家庭一个月节约的水总量大约是()A.400t B.500t C.700t D.600t4.(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【】A.cmB.cmC.cmD.cm5.生物学家发现了一种病毒,其长度约为,将数据0.00000032用科学记数法表示正确的是()A. B. C. D.6.如图,已知四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形 D.当∠ABC=90°时,它是正方形7.解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=48.若解关于x的方程时产生增根,那么常数m的值为()A.4 B.3 C.-4 D.-19.下列式子属于最简二次根式的是()A. B. C.(a>0) D.10.如图,在直角坐标系中,一次函数的图象与正比例函数的图象交于点,一次函数的图象为,且,,能围成三角形,则在下列四个数中,的值能取的是()A.﹣2 B.1 C.2 D.311.把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为()A.等于4cm B.小于4cmC.大于4cm D.小于或等于4cm12.如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A.仅甲正确 B.仅乙正确 C.甲、乙均正确 D.甲、乙均错误二、填空题(每题4分,共24分)13.若有增根,则m=______14.菱形的边长为,,则以为边的正方形的面积为__________.15.某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.16.因式分解:______.17.据统计,2019年全国高考报名人数达10310000人,比去年增加了560000,其中数据10310000用科学计数法表示为_________18.在函数y=中,自变量x的取值范围是三、解答题(共78分)19.(8分)如图,已知四边形为正方形,,点为对角线上一动点,连接,过点作.交于点,以、为邻边作矩形,连接.(1)求证:矩形是正方形;(2)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.20.(8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.21.(8分)如图1,在平面直角坐标系中,直线AB与x轴、y轴相交于、两点,动点C在线段OA上(不与O、A重合),将线段CB绕着点C顺时针旋转得到CD,当点D恰好落在直线AB上时,过点D作轴于点E.(1)求证,;(2)如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标,若不存在,请说明理由.22.(10分)为积极响应新旧功能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为35万元时,年销售量为550台;每台售价为40万元时,年销售量为500台.假定该设备的年销售量(单位:台)和销售单价(单位:万元)成一次函数关系.(1)求年销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于60万元,如果该公司想获得8000万元的年利润,则该设备的销售单价应是多少万元?23.(10分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.24.(10分)百货商店销售某种冰箱,每台进价2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;每台售价每降低10元时,平均每天能多售出1台.(销售利润=销售价-进价)(1)如果设每台冰箱降价x元,那么每台冰箱的销售利润为______元,平均每天可销售冰箱______台;(用含x的代数式表示)(2)商店想要使这种冰箱的销售利润平均每天达到5600元,且尽可能地清空冰箱库存,每台冰箱的定价应为多少元?25.(12分)如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.26.如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于两点,其对称轴与轴交于点.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标;若不存在,请说明理由;(3)连接,在直线的下方的抛物线上,是否存在一点,使的面积最大?若存在,请求出点的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-5=0,b-2=0,

解得a=5,b=2,

(1)若2是腰长,则三角形的三边长为:2、2、5,

不能组成三角形;

(2)若2是底边长,则三角形的三边长为:2、5、5,

能组成三角形,

周长为2+5+5=1.

故选B.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.2、A【解析】

根据公式进一步加以计算即可.【详解】,故选:A.【点睛】本题主要考查了二次根式的计算,熟练掌握相关公式是解题关键.3、D【解析】

先计算这10名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数500即可解答.【详解】解:0.5×2+1×3+1.5×4+2×110=1.2(t),

500×1.2=600(t),

答:估计这500名同学的家庭一个月节约的水总量大约是600t;

【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.004、B。【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,在Rt△AOB中,,∵BD×AC=AB×DH,∴DH=cm。在Rt△DHB中,,AH=AB﹣BH=cm。∵,∴GH=AH=cm。故选B。考点:菱形的性质,勾股定理,锐角三角函数定义。5、B【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000032=3.2×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、D【解析】

A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B.

∵四边形ABCD是平行四形,当AC⊥BD时,它是菱形,故B选项正确;C.根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,故C选项正确;D.有一个角是直角的平行四边形是矩形,不一定是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.7、B【解析】

方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.8、D【解析】

方程两边同乘,将分式方程化为整式方程,解整式方程,再由增根为2,建立关于m的方程求解即可.【详解】解得∵原分式方程的增根为2∴∴故选:D【点睛】本题考查分式方程的增根问题,熟练掌握解分式方程,熟记增根的定义建立关于m的方程是解题的关键.9、B【解析】

利用最简二次根式定义判断即可.【详解】A、=,不符合题意;B、是最简二次根式,符合题意;C、(a>0)=|a|=a,不符合题意;D、=,不符合题意.故选:B.【点睛】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.10、C【解析】

把M(m,3)代入一次函数y=-2x+5得到M(1,3),求得l2的解析式为y=3x,根据l1,l2,l3能围成三角形,l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),于是得到结论.【详解】解:把M(m,3)代入一次函数y=-2x+5得,可得m=1,

∴M(1,3),

设l2的解析式为y=ax,

则3=a,

解得a=3,

∴l2的解析式为y=3x,

∵l1,l2,l3能围成三角形,

∴l1与l3,l3与l2有交点且一次函数y=kx+2的图象不经过M(1,3),

∴k≠3,k≠-2,k≠1,

∴k的值能取的是2,

故选C.【点睛】本题考查了两直线平行或相交问题,一次函数图象及性质;熟练掌握函数解析式的求法,直线平行的条件是解题的关键.11、D【解析】试题分析:本题中如果平移的方向是垂直向上或垂直向下,则平移后的两直线之间的距离为4cm;如果平移的方向不是垂直向上或垂直向下,则平移后的两直线之间的距离小于4cm;故本题选D.12、C【解析】试题解析:根据甲的作法作出图形,如下图所示.∵四边形ABCD是平行四边形,∴AD∥BC,∵EF是AC的垂直平分线,在和中,∴≌,又∵AE∥CF,∴四边形AECF是平行四边形.∴四边形AECF是菱形.故甲的作法正确.根据乙的作法作出图形,如下图所示.∵AD∥BC,∴∠1=∠2,∠6=∠7.∵BF平分,AE平分∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∵AF∥BE,且∴四边形ABEF是平行四边形.∵∴平行四边形ABEF是菱形.故乙的作法正确.故选C.点睛:菱形的判定方法:有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边相等的平行四边形是菱形.二、填空题(每题4分,共24分)13、-1【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x-3),得

x-1(x-3)=1-m,

∵方程有增根,

∴最简公分母x-3=0,即增根是x=3,

把x=3代入整式方程,得m=-1.

故答案是:-1.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14、【解析】

如图,连接AC交BD于点O,得出△ABC是等边三角形,利用菱形的性质和勾股定理求得BO,得出BD,即可利用正方形的面积解决问题.【详解】解:如图,

连接AC交BD于点O,

∵在菱形ABCD中,∠ABC=60°,AB=BC,AB=4,

∴△ABC是等边三角形∠ABO=30°,AO=2,

∴BO==2,∴BD=2OB=4,

∴正方形BDEF的面积为1.

故答案为1.【点睛】本题考查菱形的性质,正方形的性质,勾股定理,等边三角形的判定与性质,注意特殊角的运用是解决问题的关键.15、【解析】

因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.【详解】解:∵x≥3,∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).故答案是:.【点睛】此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.16、a(a+3)(a-3)【解析】

先提取公因式a,再用平方差公式分解即可.【详解】原式=a(a2-9)=a(a+3)(a-3).故答案为a(a+3)(a-3).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.17、1.031×1【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将10310000科学记数法表示为:1.031×1.故答案为:1.031×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18、.【解析】

求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.三、解答题(共78分)19、(1)见解析(2)是定值,8【解析】

(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,即可得到EN=EM,然后判断∠DEN=∠FEM,得到△DEN≌△FEM,则有DE=EF即可;

(2)同(1)的方法证出△ADE≌△CDG得到CG=AE,得出CE+CG=CE+AE=AC=8即可.【详解】(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,

∵正方形ABCD,

∴∠BCD=90°,∠ECN=45°,

∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,

∴四边形EMCN为正方形,

∵四边形DEFG是矩形,

∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,

∴∠DEN=∠MEF,

又∠DNE=∠FME=90°,

在△DEN和△FEM中,∴△DEN≌△FEM(ASA),

∴ED=EF,

∴矩形DEFG为正方形,

(2)CE+CG的值为定值,理由如下:

∵矩形DEFG为正方形,

∴DE=DG,∠EDC+∠CDG=90°,

∵四边形ABCD是正方形,

∵AD=DC,∠ADE+∠EDC=90°,

∴∠ADE=∠CDG,

在△ADE和△CDG中,∴△ADE≌△CDG(SAS),

∴AE=CG,

∴AC=AE+CE=AB=×4=8,

∴CE+CG=8是定值.【点睛】此题是四边形综合题,主要考查了正方形的性质,矩形的性质与判定,三角形的全等的性质和判定,勾股定理的综合运用,解本题的关键是作出辅助线,构造三角形全等,利用全等三角形的对应边相等得出结论.20、解:(1)D错误(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②1278(颗)【解析】分析:(1)条形统计图中D的人数错误,应为20×10%.(2)根据条形统计图及扇形统计图得出众数与中位数即可.(2)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解:(1)D错误,理由为:∵共随机抽查了20名学生每人的植树量,由扇形图知D占10%,∴D的人数为20×10%=2≠2.(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②(棵).估计260名学生共植树1.2×260=1278(颗)21、(1),见解析;(2)D(3,1),平移的距离是个单位,见解析;(3)存在满足条件的点Q,其坐标为或或,见解析.【解析】

(1)根据AAS或ASA即可证明;

(2)首先求直线AB的解析式,再求出出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;(3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,求出直线PC的解析式,可得点P坐标,点C向左平移1个单位,向上平移个单位得到P,推出点D向左平移1个单位,向上平移个单位得到Q,再根据对称性可得Q′、Q″的坐标.【详解】(1)∵,∴,,∴,∵,∴(2)∵直线AB与x轴,y轴交于、两点∴直线AB的解析式为∵,∴,设,则把代入得到,∴∵,∴直线BC的解析式为,设直线的解析式为,把代入得到∴直线的解析式为,∴,∴∴平移的距离是个单位.(3)如图3中,作CP∥AB交y轴于P,作PQ∥CD交AB于Q,则四边形PCDQ是平行四边形,

易知直线PC的解析式为y=-x+,

∴P(0,),

∵点C向左平移1个单位,向上平移个单位得到P,

∴点D向左平移1个单位,向上平移个单位得到Q,

∴Q(2,),

当CD为对角线时,四边形PCQ″D是平行四边形,可得Q″,

当四边形CDP′Q′为平行四边形时,可得Q′,

综上所述,存在满足条件的点Q,其坐标为或或【点睛】本题考查一次函数综合题、平行四边形的判定和性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用待定系数法解决问题,学会用分类讨论的思想思考问题,学会用平移、对称等性质解决问题,属于中考压轴题.22、(1)年销售量与销售单价的函数关系式为;(2)该设备的销售单价应是50万元/台.【解析】

(1)设年销售量与销售单价的函数关系式为,根据待定系数法确定函数关系式即可求解;(2)设此设备的销售单价为万元/台,每台设备的利润为万元,销售数量为台,根据题意列车一元二次方程即可求解.【详解】(1)设年销售量与销售单价的函数关系式为,将、代入,得:,…解得:,∴年销售量与销售单价的函数关系式为;(2)设此设备的销售单价为万元/台,则每台设备的利润为万元,销售数量为台,根据题意得:,整理,得:,解得:,,∵此设备的销售单价不得高于60万元,∴.答:该设备的销售单价应是50万元/台.【点睛】此题主要考查一次函数与一元二次方程的应用,解题的关键是根据题意得到等量关系进行列方程求解.23、(3)等腰直角三角形;(3);(3)3.【解析】试题分析:(3)判断三角形CDE和三角形CBF全等是解题的关键;(3)此题过点E作EN∥AB,交BD于点N,证明△EMN≌△FMB,得出EM=FM,于是AM是直角三角形AEF斜边EF中线,只要求出EF长,AM长就求出来了;(3)设EF与GH交于P,连接CE,CF,若∠EPH=45°,前面已证∠EFC=45º,显然GH∥CF,又有AF∥DC,可判断四边形GFCH是平行四边形,CF=GH=,在Rt△CBF中,用勾股定理求出BF长,即t值求出.试题解析:(3)∵点E,F的运动速度相同,且同时出发移动t秒,∴DE=BF=t,又∵CD=CB,∠CDE=∠CBF,∴△CDE≌△CBF,∴CE=CF,∠DCE=∠BCF,∠ECF=∠ECB+∠BCF=∠ECB+∠DCE=90º,∴△CEF的形状是等腰直角三角形;(3)先证△EMN≌△FMB,过点E作EN∥AB,交BD于点N,∴∠END=∠ABD=∠EDN=45°,∴EN="ED=BF=3",可证△EMN≌△FMB(AAS),∴EM=FM,Rt△AEF中,AE=4,AF=6+3=8,EF=,∴AM=EF=.(3)连接CE,CF,设EF与GH交于P,由(3)得∠CFE=45°,又∠EPH=45°,∴GH∥CF,又AF∥DC,∴四边形GFCH是平行四边形,∴CF=GH=,在Rt△CBF中,得BF=3,∴t=3.考点:3.正方形性质;3.三角形全等及勾股定理的运用;3.平行四边形的判定与性质.24、(1),;(2)应定价2700元.【解析】

(1)销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”;

(2)根据每台的盈利×销售的件数=5600元,即可列方程求解.【详解】解:(1)每台冰箱的销售利润为元,平均每天可销售冰箱台;(2)依题意,可列方程:解方程,得x1=120,x2=200因为要尽可能地清空冰箱库存,所以x=120舍去2900-200=2700元答:应定价2700元.点睛:本题考查了一元二次方程的应用,关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.25、24m2【解析】

连接AC,利用勾股定理逆定理可以得出△ABC是直角三角形,用△ABC的面积减去△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论