河南省周口市沈丘县2024届数学八年级下册期末质量检测模拟试题含解析_第1页
河南省周口市沈丘县2024届数学八年级下册期末质量检测模拟试题含解析_第2页
河南省周口市沈丘县2024届数学八年级下册期末质量检测模拟试题含解析_第3页
河南省周口市沈丘县2024届数学八年级下册期末质量检测模拟试题含解析_第4页
河南省周口市沈丘县2024届数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省周口市沈丘县2024届数学八年级下册期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.定义新运算:a⊙b=a-1(a⩽b)-ab(a>b且b≠0)A. B.C. D.2.王芳同学周末去新华书店购买资料,右图表示她离家的距离(y)与时间(x)之间的函数图象.若用黑点表示王芳家的位置,则王芳走的路线可能是A. B. C. D.3.下列四组线段中。可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,3,34.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图像经过的象限为()A.二、三、四B.一、二、四C.一、三、四D.一、二、三5.若点A(3-m,n+2)关于原点的对称点B的坐标是(-3,2),则m,n的值为()A.m=-6,n=-4 B.m=O,n=-4C.m=6,n=4 D.m=6,n=-46.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不能确定7.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是()A.平均数 B.中位数C.众数 D.方差8.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元9.一元一次不等式组的解集为x>a,则a与b的关系为()A.a>b B.a<b C.a≥b D.a≤b10.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是()A.学一样B.成绩虽然一样,但方差大的班里学生学习潜力大C.虽然平均成绩一样,但方差小的班学习成绩稳定D.方差较小的班学习成绩不稳定,忽高忽低二、填空题(每小题3分,共24分)11.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.12.如图,已知点A的坐标为(5,0),直线y=x+b(b≥0)与y轴交于点B,连接AB,∠α=75°,则b的值为_____.13.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.14.在平面直角坐标系xoy中,我们把横纵坐标都是整数的点叫做整点,过点(1,2)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在△AOB内部(不包括边界)的整点的坐标是________.15.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.16.因式分解:____.17.如图,直线y1=x+1和直线y1=0.5x+1.5相交于点(1,3),则当x=_____时,y1=y1;当x______时,y1>y1.18.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到点D,则橡皮筋被拉长了_____cm.三、解答题(共66分)19.(10分)已知,在中,,于点,分别交、于点、点,连接,若.(1)若,求的面积.(2)求证:.20.(6分)已知:如图平行四边形中,,且,过作于,点是的中点,连接交于点,点是的中点,过作交的延长线于.(1)若,求的长.(2)求证:.21.(6分)已知:如图,在梯形中,,,是上一点,且,,求证:是等边三角形.22.(8分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.(1)求线段DE的长;(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.23.(8分)如图,在中,是的中点,,的延长线相交于点,(1)求证:;(2)若,且,求的长.24.(8分)如图,在平面直角坐标系中,直线与轴、轴分别交于点D、C,直线AB与轴交于点,与直线CD交于点.(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作轴,交直线AB于点F,若以、、、为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一动点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出符合条件的点Q的个数及其中一个点Q的坐标;否则说明理由.25.(10分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)17≤t<8m28≤t<91139≤t<10n410≤t<114请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数.26.(10分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据题意可得y=3⊕x=2(x≥3)【详解】由题意得y=3⊕x=2(当x≥3时,y=2;当x<3且x≠0时,y=﹣3x图象如图:故选:C.【点睛】此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.2、D【解析】分析:由图知:在行驶的过程中,有一段时间小王到家的距离都不变,且最后回到了家,可根据这两个特点来判断符合题意的选项.

详解:由图知:在前往新华书店的过程中,有一段时间小王到家的距离都不变,故可排除B和C,由最后回到了家可排除A,所以只有选项D符合题意;

故选D.

点睛:本题主要考查函数的图象的知识点,重在考查了函数图象的读图能力.能够根据函数的图象准确的把握住关键信息是解答此题的关键.3、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A.42+52≠62,不可以构成直角三角形,故A选项错误;B.1.52+22=2.52,可以构成直角三角形,故B选项正确.C、22+32≠42,不可以构成直角三角形,故C选项错误;

D、12+32≠32,不可以构成直角三角形,故D选项错误;故选:B【点睛】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4、A【解析】试题分析:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∴一次函数y=kx+k的图像经过二、三、四象限.故选A.考点:一次函数的性质.5、B【解析】试题分析:关于原点对称的两点的横纵坐标分别互为相反数,则3-m=3,n+2=-2,解得:m=0,n=-4.考点:原点对称6、C【解析】

根据P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,由-3<1,结合一次函数y=-x-1在定义域内是单调递减函数,判断出y1,y1的大小关系即可.【详解】∵P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,且-3<1,∴y1>y1.故选C.【点睛】此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.7、C【解析】分析:一组数据中出现次数最多的一个数是这组数据的众数,班长最关心吃哪种水果的人最多,即这组数据的众数.详解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选C.点睛:此题主要考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8、D【解析】

A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.9、C【解析】【分析】根据不等式解集的确定方法,“大大取大”,可以直接得出答案.【详解】∵一元一次不等式组的解集是x>a,∴根据不等式解集的确定方法:大大取大,∴a≥b,故选C.【点睛】本题考查了不等式解集的确定方法,熟练掌握不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键,也可以利用数形结合思想利用数轴来确定.10、C【解析】分析:由题意知数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,选择学生参加考试时,还要选方差较小的学生.解答:解:∵数学成绩的平均分相等,但他们成绩的方差不等,数学的平均成绩一样,说明甲和乙的平均水平基本持平,方差较小的同学,数学成绩比较稳定,故选C.二、填空题(每小题3分,共24分)11、120【解析】【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.【详解】设原计划每天种树x棵,则实际每天种树2x棵,依题可得:,解得:x=120,经检验x=120是原分式方程的根,故答案为:120.【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.12、【解析】

设直线与x轴交于点C,由直线BC的解析式可得出结合可得出,通过解含30度角的直角三角形即可得出b值.【详解】设直线与x轴交于点C,如图所示:∵直线BC的解析式为y=x+b,∴∵∴当x=0时,y=x+b=b.在Rt△ABO中,OB=b,OA=5,∴AB=2b,∴∴故答案为:【点睛】考查待定系数法求一次函数解析式,三角形的外角性质,含角的直角三角形的性质,勾股定理等,综合性比较强,根据直线解析式得到是解题的关键.13、1【解析】

先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),

所以小明回家的速度是每分钟步行10÷10=1(米).

故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.14、(1,1)和(2,1).【解析】

设直线AB的解析式为,由直线AB上一点的坐标利用待定系数法即可求出b值,画出图形,即可得出结论.【详解】解:设直线AB的解析式为,∵点(1,2)在直线AB上,∴,解得:b=,∴直线AB的解析式为.∴点A(5,0),点B(0,).画出图形,如图所示:∴在△AOB内部(不包括边界)的整点的坐标是:(1,1)和(2,1).【点睛】本题考查了两条直线平行问题以及待定系数法求函数解析式,解题的关键是画出图形,利用数形结合解决问题.本题属于基础题,难度不大,解决该题目时,由点的坐标利用待定系数法求出函数解析式是关键.15、1.【解析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解:∵BD⊥CD,BD=4,CD=3,∴.∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC.∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC.又∵AD=6,∴四边形EFGH的周长=6+5=1.16、【解析】

先提取4,然后利用平方差公式计算.【详解】原式=4(m2-9)=4(m+3)(m-3),

故答案是:4(m+3)(m-3)【点睛】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,一般有公因式会先提取公因式.17、1【解析】

直线y1=x+1和直线y1=0.5x+1.5交点的横坐标的值即为y1=y1时x的取值;直线y1=x+1的图象落在直线y1=0.5x+1.5上方的部分对应的自变量的取值范围即为时x的取值.【详解】解:∵直线和直线相交于点,∴当时,;由图象可知:当时,.故答案为:1;.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程的关系.18、2.【解析】

根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故答案为2.【点睛】此题主要考查了等腰三角形的性质以及勾股定理的应用.三、解答题(共66分)19、(1)72;(2)见解析.【解析】

(1)由得AB=CD,AD=BC,AB∥CD,则∠BAG=∠ACE,由得∠ACE+∠EAC=90°,则∠BAG+∠EAC=∠BAE=90°,由,可证得∠AFB=∠ACE,又因为BF=BC,可得BF=AC,可证△ABF≌△EAC,则AB=AE,的面积=AE∙CD=,在Rt△ABE中,由BE=12即可求得;(2)由(1)知:△ABF≌△EAC,得△EAD≌△EAC,设CE=x,则AB=CD=2x,BF=AD=x,根据面积法计算AG的长,作高线GH,利用三角函数分别得EH和GH的长,利用勾股定理计算EG的长,代入结论化简可得结论.【详解】(1)解:∵,∴AB=CD,AD=BC,AB∥CD,∴∠BAG=∠ACE,∵,∴∠ACE+∠EAC=90°,∴∠BAG+∠EAC=∠BAE=90°,∵,,∴∠AFB=∠ACE,∠AEC=∠BAE=90°,∵BF=BC,,∴BF=AC,∴△ABF≌△EAC,∴AB=AE,∴的面积=AE∙CD=,在Rt△ABE中,BE=12∴2==72,∴的面积=72;(2)证明:由(1)知:△ABF≌△EAC,

∵BF=BC=AD,

∴△EAD≌△EAC,

∴AF=DE=CE,AE=AB=2CE,

设CE=x,则AB=CD=2x,BF=AD=x,,

S△ABF=BF•AG=AF•AB,

x•AG=x•2x,

∴AG=x,

∴CG=x-x=x,

过G作GH⊥CD于H,

sin∠ECG==,

∴GH=x,

cos∠ECG==,

CH=x,

∴EH=x-x=,

∴EG===,

∴==,

∴GE=AG.故答案为(1)72;(2)见解析.【点睛】本题考查平行四边形的性质、直角三角形的判定和性质,勾股定理、三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形,熟练掌握勾股定理与三角函数定义.20、(1);(2)见解析.【解析】

(1)由已知四边形是平行四边形得出,且,可求出AF,再通过证明即可求出的长;(2)通过作辅助线证明即可证明.【详解】解:(1)在平行四边形中,,∵,∴,,,∴,∴.点是的中点,,.∴,∴∴,,∴.(2)连接,∵,,∴,∵点是的中点,,∴,∴,∴∴,∴,∴.方法二:取中点,连接(其他证法均参照评分)【点睛】本题考查了平行四边形的性质、三角形全等的判定与性质,利用三角形证明与是解题的关键.21、见解析.【解析】

由已知条件证得四边形AECD是平行四边形,则CE=AD,从而得出CE=CB,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.【详解】证明:,,四边形是平行四边形,,,,是等边三角形.【点睛】本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.22、(1)1;(2)(,);(3)6+﹣3或6++3或2﹣2或8.【解析】

(1)想办法证明DE⊥AB,利用角平分线的性质定理证明DE=OD即可解决问题;(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.(3)分三种情形:①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形.③如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.分别解直角三角形即可解决问题.【详解】解:(1)∵直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,∴A(0,3),B(,0),∴OA=3,OB=,∴tan∠ABO==,∴∠ABO=60°,∵BD平分∠ABO,∴∠DBO=30°,∴OD=OB•tan30°=1,DB=2OD=2,∴AD=DB=2,∴AE=EB,∴DE⊥AB,∵DO⊥OB,DB平分∠ABO,∴DE=DO=1.(2)过点E作EE′∥BC,点E′在x轴下方且EE′=2,作点D关于直线BC的对称点D′,连接E′D′交BC于F,在射线CB上取FG=2.此时D→F→G→E的路径最短.∵E′(,),D′(2,﹣1),∴直线D′E′的解析式为,直线BC的解析式为y=x﹣3,由,解得,,∴F.把点F向上平移3个单位,向右平移个单位得到点G,∴G().(3)以点A为圆心,以AE为半径作⊙A,则DE为⊙A的切线.①如图1中,当CM=CN时,在AE上取一点P,使得AP=PN.设EN=x.∵CM=CN,∠MCN=30°,∴∠CNM=∠CMN=75°,∴∠ANE=∠CNM=75°,∴∠EAN=15°,∴∠PAN=∠ANP=15°,∴∠EPN=30°,∴PN=AP=2x,PE=x,∴2x+x=,∴x=2﹣3,∴AN=,∴CM=CN==.②如图2中,当MN=MC时,作BP⊥MN于P,则四边形ADPB是矩形,PB=AE=,在Rt△PBM中,∠PBM=30°,∴BM=2,∴CM=BC﹣BM=2﹣2.③如图2﹣1中.CM=CN时,同法可得CM=.④如图3中,当NC=MN时,D与N重合,作DP⊥BC于P.∵CD=6+2=8,∠DCP=30°,∴PC=PM=4,∴CM=8综上所述,满足条件的CM的值为或或2﹣2或8.【点睛】本题考查一次函数的应用、锐角三角函数、勾股定理、解直角三角形、等腰三角形的判定和性质、轴对称最短问题等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)见解析;(2).【解析】

(1)由“ASA”可证△AEF≌△DEC;(2)由直角三角形的性质可得,即可求BC的长.【详解】解:(1)∵四边形ABCD是平行四边形∴AB∥CD,AD=BC∴∠EAF=∠D,∵点E是AD中点,∴AE=DE,且∠EAF=∠D,∠AEF=∠CED∴△AEF≌△DEC(ASA)(2)∵∠FCB=90°,AD∥BC∴∠CED=90°,且∠D=30°,CD=3cm,,,.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,熟练运用平行四边形的性质是本题的关键.24、(1);(2)点E的坐标为或;(3)符合条件的点Q共3个,坐标为(3,1),(-6,4)或【解析】

(1)先确定出A的坐标,再利用待定系数法即可得出结论;

(2)先表示出EF=|a+4-(-2a-2)|=|3a+6|,进而建立方程|3a+6|=4,求解即可得出结论;

(3)分三种情况,利用菱形的性质和中点坐标公式即可得出结论.【详解】解:(1)∵点在上.∴,解得,即点A的坐标为(-2,2),设直线AB的解析式为,∴.解得,∴直线AB的解析式为.(2)由题意,设点E的坐标为,则∵轴,点F在直线上,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论