




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市侯马市2024届八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若函数的解析式为y=,则当x=2时对应的函数值是()A.4 B.3 C.2 D.02.如图,丝带重叠的部分一定是()A.菱形 B.矩形 C.正方形 D.都有可能3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(
)A.9人 B.10人 C.11人 D.12人4.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°5.某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是()A.1280(1+x)=1600 B.1280(1+2x)=1600C.1280(1+x)2=2880 D.1280(1+x)+1280(1+x)2=28806.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,-3),则不等式kx+b+3≤0的解为()A.x≤0B.x≥0C.x≥2D.x≤27.若(为整数),则的值可以是()A.6 B.12 C.18 D.248.菱形ABCD中,已知:AC=6,BD=8,则此菱形的边长等于()A.6 B.8 C.10 D.59.用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x米,根据题意列出关于x的方程为()A.x(28﹣x)=25 B.2x(14﹣x)=25C.x(14﹣x)=25 D.10.下列方程中,一元二次方程的是()A.=0 B.(2x+1)(x﹣3)=1C.ax2+bx=0 D.3x2﹣2xy﹣5y2=0二、填空题(每小题3分,共24分)11.直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.12.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是________.13.一个等腰三角形的周长为12cm,设其底边长为ycm,腰长为xcm,则y与x的函数关系是为_____________________.(不写x的取值范围)14.请写出一个比2小的无理数是___.15.甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.16.如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.17.如果一个n边形的内角和等于它的外角和的3倍,则n=______.18.如图,在平行四边形中,,将平行四边形绕顶点顺时针旋转到平行四边形,当首次经过顶点时,旋转角__________.三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.20.(6分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:应试者面试成绩笔试成绩才艺甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?21.(6分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,AB边交y轴于点H,OC=4,∠BCO=60°.(1)求点A的坐标(2)动点P从点A出发,沿折线A﹣B一C的方向以2个单位长度秒的速度向终点C匀速运动,设△POC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,直接写出当t为何值时△POC为直角三角形.22.(8分)如图1,在中,,,,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.直接用含t的代数式分别表示:______,______;是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.23.(8分)如图,四边形是正方形,点是边上的任意一点,于点,,且交于点,求证:(1)(2)24.(8分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交C于F,EG⊥AB于G,请判断四边形GECF的形状,并证明你的结论.25.(10分)如图,已知直线:与x轴,y轴的交点分别为A,B,直线:与y轴交于点C,直线与直线的交点为E,且点E的横坐标为2.(1)求实数b的值;(2)设点D(a,0)为x轴上的动点,过点D作x轴的垂线,分别交直线与直线于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.26.(10分)如图,已知直线与直线相交于点.(1)求、的值;(2)请结合图象直接写出不等式的解集.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
把x=2代入函数解析式y=,即可求出答案.【详解】把x=2代入函数解析式y=得,故选A.【点睛】本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.2、A【解析】
首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.∴BC=CD,∴四边形ABCD是菱形.故选:A.【点睛】本题考查了平行四边形的判定和性质以及菱形的判定和性质,利用平行四边形的面积公式得到一组邻边相等是解题关键.3、C【解析】
设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.4、C【解析】
根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC,
由折叠的性质得:∠BAC=∠B′AC,
∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;
故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.5、C【解析】
根据2017年及2019年该地投入异地安置资金,即可列出关于x的一元二次方程.【详解】解:设从2017年到2019年该地投入异地安置资金的年平均增长率为x根据题意得:1280(1+x)2=1280+1600=2880.故选C.【点睛】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.6、A.【解析】试题分析:由kx+b+3≤1得kx+b≤-3,直线y=kx+b与y轴的交点为B(1,-3),即当x=1时,y=-3,∵函数值y随x的增大而增大,∴当x≥1时,函数值kx+b≥-3,∴不等式kx+b+3≥1的解集是x≥1.故选A.考点:一次函数与一元一次不等式.7、C【解析】
根据(n为整数),可得:m的值等于一个整数的平方与2的乘积,据此求解即可.【详解】∵(n为整数),
∴m的值等于一个整数的平方与2的乘积,
∵12=22×3,1=32×2,24=22×6,
∴m的值可以是1.
故选:C.【点睛】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.8、D【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】解:如图:解:∵四边形ABCD是菱形,∵AC=6,BD=8,
∴OA=3,OB=4,即菱形ABCD的边长是1.
故选:D.【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.9、C【解析】
由它的一边长为x,表示出另一边长,根据矩形的面积公式列出方程即可得.【详解】设它的一边长为x米,则另一边长为=14﹣x(米),根据题意,得:x(14﹣x)=25,故选C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.10、B【解析】试题分析:根据一元二次方程的定义:A、x2+=0是分式方程;B、(2x﹣1)(x+2)=1,即2x2+3x﹣3=0是一元二次方程;C、ax2+bx=0中a=0时,不是一元二次方程;D、3x2﹣2xy﹣5y2=0是二元二次方程;故选B.考点:一元二次方程的定义二、填空题(每小题3分,共24分)11、1【解析】
根据边之间的关系,运用勾股定理,列方程解答即可.【详解】由题意可设两条直角边长分别为x,2x,由勾股定理得x2+(2x)2=(1)2,解得x1=1,x2=-1舍去),所以较短的直角边长为1.故答案为:1【点睛】本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.12、PA=PB=PC【解析】
解:∵边AB的垂直平分线相交于P,∴PA=PB,∵边BC的垂直平分线相交于P,∴PB=PC,∴PA=PB=PC.故答案为:PA=PB=PC.13、y=12-2x【解析】
根据等腰三角形周长公式可求出底边长与腰的函数关系式,【详解】解:因为等腰三角形周长为12,根据等腰三角形周长公式可求出底边长y与腰x的函数关系式为:y=12-2x.故答案为:y=12-2x.【点睛】本题考查一次函数的应用以及等腰三角形的周长及三边的关系,得出y与x的函数关系是解题关键.14、(答案不唯一).【解析】
根据无理数的定义写出一个即可.【详解】解:比2小的无理数是,故答案为:(答案不唯一).【点睛】本题考查了无理数的定义,能熟记无理数是指无限不循环小数是解此题的关键,此题是一道开放型的题目,答案不唯一.15、1【解析】
由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.【详解】解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;
乙车的平均速度为:300÷(9-6)=100(km/h),
当乙车7:30时,乙车离A的距离为:100×1.5=150(km),
∴点A(7.5,150),
由图可知点B(5,0),
设甲的函数解析式为:y=kt+b,
把点A(7.5,150),B(5,0)代入y=kt+b得:,解得:,∴甲的函数解析式为:y=1t-300,
当t=9时,y=1×9-300=240,
∴9点时,甲距离开A的距离为240km,
∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.
故答案为:1.
【点睛】本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.16、30°【解析】
解:∵四边形ABCD是矩形,
∴∠B=90°,
∵E为边AB的中点,
∴AE=BE,
由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,
∴AE=FE,
∴∠EFA=∠EAF=75°,
∴∠BEF=∠EAF+∠EFA=150°,
∴∠CEB=∠FEC=75°,
∴∠FCE=∠BCE=90°-75°=15°,
∴∠BCF=30°,
故答案为30°.【点睛】本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.17、1【解析】
根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.18、36°【解析】
由旋转的性质可知:▱ABCD全等于▱ABCD,得出BC=BC,由等腰三角形的性质得出∠BCC=∠C,由旋转角∠ABA=∠CBC,根据等腰三角形的性质计算即可.【详解】∵▱ABCD绕顶点B顺时针旋转到▱ABCD,∴BC=BC,∴∠BCC=∠C,∵∠A=72°,∴∠C=∠C=72°,∴∠BCC=∠C,∴∠CBC=180°−2×72°=36°,∴∠ABA=36°,故答案为36.【点睛】此题考查旋转的性质,等腰三角形的性质,解题关键在于掌握其性质得出∠BCC=∠C.三、解答题(共66分)19、见解析;【解析】
连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.20、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.【解析】
(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用【详解】(1),,∴∴排名顺序为:甲、丙、乙.(2)由题意可知,只有甲的笔试成绩只有79分,不符合规定乙的成绩为:丙的成绩为:∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰∴丙会被录用.【点睛】此题考查加权平均数,掌握运算法则是解题关键21、(1);(2);(3)t=1或t=3【解析】
(1)首先做辅助线BF⊥OC于F,AG⊥x轴于G,在Rt△BCF中,求出BF,BF=AG,OG=CF,又因为A在第二象限,即可得出点A的坐标.(2)需分两种情况:①当时,即P从A运动到B,求出三角形的面积,②当时,即P从B运动到C,求出三角形的面积,将两种情况综合起来即可得出最后结果.(3)在(2)的条件下,当t=1或t=3时,根据三角形的性质,可以判定△POC为直角三角形.【详解】(1)如图,做辅助线BF⊥OC于F,AG⊥x轴于G在Rt△BCF中,∠BCF=60°,BC=4,CF=2,BF=,BF=AG=,OG=CF=2,A在第二象限,故点A的坐标为(-2,)(2)当时,即P从A运动到B,S==,设P(m,n),∠BCO=60°,当时,即P从B运动到C,BP=2t,则cos30°==,,则S==综上所述,(3)在(2)的条件下,当t=1或t=3时,△POC为直角三角形.【点睛】此题主要考查在平面直角坐标系中,利用菱形的性质,进行求解点坐标,以及动点问题,再利用直角三角形的三角函数,即可得解.22、(1),;(2)详见解析;(3)2【解析】
由根据路程等于速度乘以时间可得,,,则,根据,,可得:,根据相似三角形的判定可得:∽,再根据相似三角形的性质可得:,即,从而解得:,(2)根据,当时,可判定四边形PDBQ为平行四边形,根据平行四边形的性质可得:,解得:,(3)根据题意可得:,当时,点的坐标为,当时,点的坐标为,设直线的解析式为:,则,解得:,因此直线的解析式为:,再根据题意得:点P的坐标为,点Q的坐标为,因此在运动过程中PQ的中点M的坐标为,当时,,因此点M在直线上,作轴于N,则,,由勾股定理得,,因此线段PQ中点M所经过的路径长为.【详解】由题意得,,,则,,,,∽,,即,解得:,故答案为:,,存在,,当时,四边形PDBQ为平行四边形,,解得:,则当时,四边形PDBQ为平行四边形,以点C为原点,以AC所在的直线为x轴,建立如图2所示的平面直角坐标系,由题意得:,当时,点的坐标为,当时,点的坐标为,设直线的解析式为:,则,解得:,直线的解析式为:,由题意得:点P的坐标为,点Q的坐标为,在运动过程中PQ的中点M的坐标为,当时,,点M在直线上,作轴于N,则,,由勾股定理得,,线段PQ中点M所经过的路径长为.【点睛】本题主要考查几何动点问题,解决本题的关键是要准确找出动点运动路线,动点运动长度与运动时间的关系,并结合几何图形中的等量关系列方程进行解答.23、(1)见详解;(2)见详解.【解析】
(1)证明△AED≌△BFA即可说明DE=AF;(2)由△AED≌△BFA可得AE=BF,又AFAE=EF,所以结论可证.【详解】证明:(1)∵四边形ABCD是正方形,
∴AD=AB,∠DAE+∠BAF=90°.
∵∠ABF+∠BAF=90°,
∴∠DAE=∠ABF.
又∠AED=∠BFA.
∴△AED≌△BFA(AAS).
∴DE=AF;
(2)∵△AED≌△BFA,
∴AE=BF.
∵AF-AE=EF,
∴AF-BF=EF.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质,解决此类问题一般是通过三角形的全等转化线段.24、四边形GECF是菱形,理由详见解析.【解析】试题分析:根据全等三角形的判定定理HL进行证明Rt△AEG≌Rt△AEC(HL),得到GE=EC;根据平行线EG∥CD的性质、∠BAC平分线的性质以及等量代换推知∠FEC=∠CFE,易证CF=CE;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF是菱形,理由如下:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农药批发商的采购策略优化考核试卷
- 盾构机施工中的安全与健康管理考核试卷
- 电气设备在智能电网储能设备管理中的应用考核试卷
- 炸药及火工品的安全生产标准化与规范化考核试卷
- 广告创意与情感营销结合考核试卷
- 海洋工程装备海洋环境保护策略考核试卷
- 湖南省新高考教学教研联盟2025届高三下学期第二次联考语文试卷及参考答案
- 上海市虹口区2025届高三高考二模思想政治试卷(含答案)
- 2025如何撰写商业店铺租赁合同协议书
- 2025版合同:国际专利技术转让协议
- 【9数一模】2025年安徽省合肥市蜀山区九年级中考一模数学试卷(含答案)
- 数学-河南省湘豫名校联考2024-2025学年高三下学期春季学期第二次模拟考试(湘豫二模)试题和答案
- 多媒体应用设计师技能考核试题试题及答案
- 中央2025年中国残联直属单位招聘26人笔试历年参考题库附带答案详解
- 2025年广西壮族自治区南宁市青秀区中考一模英语试题(含答案)
- GB/T 10810.2-2025眼镜镜片第2部分:渐变焦
- (2025)会计基础考试题库及答案(带答案解析)
- 田径运动会各种记录表格
- TSG-T7001-2023电梯监督检验和定期检验规则宣贯解读
- 中医培训课件:《中药热奄包技术》
- 报价单(报价单模板)
评论
0/150
提交评论