浙江省杭州市萧山区城北片2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
浙江省杭州市萧山区城北片2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
浙江省杭州市萧山区城北片2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
浙江省杭州市萧山区城北片2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
浙江省杭州市萧山区城北片2024年八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市萧山区城北片2024年八年级数学第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形。那么,这四个图形中,其面积满足的个数是()A.1 B.2 C.3 D.42.在同一平面直角坐标系中的图像如图所示,则关于的不等式的解为().A. B. C. D.无法确定3.下列计算正确的是()A.a3•a2=a6 B.(a3)4=a7 C.3a2﹣2a2=a2 D.3a2×2a2=6a24.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A. B. C. D.5.如图所示的四个图案是我国几家国有银行的图标,其中图标属于中心对称的有()A.1个 B.2个 C.3个 D.4个6.某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:成绩(分)202224262830人数(人)154101510根据表中的信息判断,下列结论中错误的是()A.该班一共有45名同学B.该班学生这次考试成绩的众数是28C.该班学生这次考试成绩的平均数是25D.该班学生这次考试成绩的中位数是287.如图,在中,,,将绕点旋转,当点的对应点落在边上时,点的对应点,恰好与点、在同一直线上,则此时的面积为()A.240 B.260 C.320 D.4808.如图,在四边形ABCD中,点D在AC的垂直平分线上,.若,则的度数是()A. B. C. D.50°9.以下列各组数为边长,不能构成直角三角形的是()A.5,12,13 B.1,2, C.1,,2 D.4,5,610.对角线相等且互相平分的四边形是()A.一般四边形 B.平行四边形 C.矩形 D.菱形二、填空题(每小题3分,共24分)11.若分式x-1x+1的值为零,则x的值为12.如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.13.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别ABCDEF类型足球羽毛球乒乓球篮球排球其他人数10462那么,其中最喜欢足球的学生数占被调查总人数的百分比为______%.14.如图,是中边中点,,于,于,若,则__________.15.如图,△ABC是边长为1的等边三角形,分别取AC,BC边的中点D,E,连接DE,作EF∥AC,得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1,连接D1E1,作E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2…照此规律作下去,则C2018=_____.16.对于实数x,我们[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值范围是______.17.(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.18.如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A、C两点的坐标分别为(2,0)、(1,2),点B在第一象限,将直线y=-2x沿y轴向上平移m(m>0)个单位.若平移后的直线与边BC有交点,则m的取值范围是_____________.三、解答题(共66分)19.(10分)关于的一元二次方程求证:方程总有两个实数根若方程两根且,求的值20.(6分)如果一组数据﹣1,0,2,3,x的极差为6(1)求x的值;(2)求这组数据的平均数.21.(6分)如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:三角形的直角边长/12345678910阴影部分的面积/398392382368350302272200(1)在这个变化过程中,自变量、因变量各是什么?(2)请将上述表格补充完整;(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.22.(8分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式.23.(8分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.(1)求点B的坐标;(2)当△OPB是直角三角形时,求点P运动的时间;(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.24.(8分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的型车2017年7月份销售额为万元,今年经过改造升级后,型车每辆的销售价比去年增加元,若今年7月份与去年7月份卖出的型车数量相同,则今年7月份型车销售总额将比去年7月份销售总额增加.求今年7月份顺风车行型车每辆的销售价格.25.(10分)武汉某文化旅游公司为了在军运会期间更好地宣传武汉,在工厂定制了一批具有浓郁的武汉特色的商品.为了了解市场情况,该公司向市场投放,型商品共件进行试销,型商品成本价元/件,商品成本价元/件,其中型商品的件数不大于型的件数,且不小于件,已知型商品的售价为元/件,型商品的售价为元/件,且全部售出.设投放型商品件,该公司销售这批商品的利润元.(1)直接写出与之间的函数关系式:_______;(2)为了使这批商品的利润最大,该公司应该向市场投放多少件型商品?最大利润是多少?(3)该公司决定在试销活动中每售出一件型商品,就从一件型商品的利润中捐献慈善资金元,当该公司售完这件商品并捐献资金后获得的最大收益为元时,求的值.26.(10分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=1.①求∠C的度数,②求CE的长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】分析:利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理;利用圆的面积公式表示出S1、S2、S3,然后根据勾股定理即可解答;在勾股定理的基础上结合等腰直角三角形的面积公式,运用等式的性质即可得出结论;分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.详解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2.第一幅图:∵S3=c2,S1=a2,S2=b2∴S1+S2=(a2+b2)=c2=S3;第二幅图:由圆的面积计算公式知:S3=,S2=,S1=,则S1+S2=+==S3;第三幅图:由等腰直角三角形的性质可得:S3=c2,S2=b2,S1=a2,则S3+S2=(a2+b2)=c2=S1.第四幅图:因为三个四边形都是正方形则:∴S3=BC2=c2,S2=AC2=b2,,S1=AB2=a2,∴S3+S2=a2+b2=c2=S1.故选:D.点睛:此题主要考查了三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式.2、C【解析】

求关于的不等式的解集就是求:能使函数的图象在函数的上边的自变量的取值范围.【详解】解:能使函数的图象在函数的上边时的自变量的取值范围是.故关于的不等式的解集为:.故选:.【点睛】本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.3、C【解析】

根据同底数幂乘法、幂的乘方、整式加减法和乘法运算法则进行分析.【详解】A.a3•a2=a5,本选项错误;B.(a3)4=a12,本选项错误;C.3a2﹣2a2=a2,本选项正确;D.3a2×2a2=6a4,本选项错误.故选C【点睛】本题考核知识点:整式运算.解题关键点:掌握整式运算法则.4、A【解析】

解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE•BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.5、B【解析】

根据中心对称图形的概念求解.【详解】第一个是是中心对称图形,故符合题意;

第二个是中心对称图形,故符合题意;

第三个不是中心对称图形,故不符合题意;

第四个不是中心对称图形,故不符合题意.所以共计2个中心对称图形.故选:B.【点睛】考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、C【解析】

根据总数,众数,中位数的定义即可一一判断;【详解】解:该班一共有:1+5+4+10+15+10=45(人),众数是28分,中位数为28分,故A、B、D正确,C错误,故选:C.【点睛】本题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.7、A【解析】

根据旋转的性质可得,因此可得为等腰三角形,故可得三角形的高,进而计算的面积.【详解】根据旋转的性质可得因此为等腰三角形,等腰三角形的高为:故选A.【点睛】本题主要考查图形的旋转和等腰三角形的性质,难点在于根据题意求出高.8、A【解析】

根据平行线的性质可得,再由线段垂直平分线的性质可得AD=CD,根据等腰三角形的性质可得,由三角形的内角和定理即可求得的度数.【详解】∵,∴,∵点D在AC的垂直平分线上,∴AD=CD,∴,∴.故选A.【点睛】本题考查了平行线的性质、线段垂直平分线的性质及等腰三角形的性质,正确求得是解决问题的关键.9、D【解析】【分析】根据勾股定理逆定理进行判断即可.【详解】因为,A.52+122=132B.12+22=)2C.12+=22D.42+52≠62所以,只有选项D不能构成直角三角形.故选:D【点睛】本题考核知识点:勾股定理逆定理.解题关键点:能运用勾股定理逆定理.10、C【解析】

由对角线互相平分,可得此四边形是平行四边形;又由对角线相等,可得是矩形;【详解】∵四边形的对角线互相平分,∴此四边形是平行四边形;又∵对角线相等,∴此四边形是矩形;故选B.【点睛】考查矩形的判定,常见的判定方法有:1.有一个角是直角的平行四边形是矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.二、填空题(每小题3分,共24分)11、1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.12、a>b>d>c【解析】

设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.【详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),

所以,a>b>d>c.【点睛】本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.13、1【解析】

依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.【详解】解:∵被调查学生的总数为10÷20%=50人,∴最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%.故答案为:1.【点睛】本题考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.14、1【解析】

根据直角三角形斜边上的中线等于斜边的一半得出ED=BC,FD=BC,那么ED=FD,又∠EDF=60°,根据有一个角是60°的等腰三角形是等边三角形判定△EDF是等边三角形,从而得出ED=FD=EF=4,进而求出BC.【详解】解:∵D是△ABC中BC边中点,CE⊥AB于E,BF⊥AC于F,∴ED=BC,FD=BC,∴ED=FD,又∠EDF=60°,∴△EDF是等边三角形,∴ED=FD=EF=4,∴BC=2ED=1.故答案为1.【点睛】本题考查了直角三角形斜边上的中线的性质,等边三角形的判定与性质,判定△EDF是等边三角形是解题的关键.15、【解析】

根据三角形中位线定理可求出C1的值,进而可得出C2的值,找出规律即可得出C2018的值【详解】解:∵E是BC的中点,ED∥AB,∴DE是△ABC的中位线,∴DE=AB=,AD=AC=,∵EF∥AC,∴四边形EDAF是菱形,∴C1=4×;同理求得:C2=4×;…,.故答案为:.【点睛】本题考查了三角形中位线定理、等边三角形的性质、菱形的性质;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.16、46≤x<1【解析】分析:根据题意得出5≤<6,进而求出x的取值范围,进而得出答案.详解:∵[x]表示不大于x的最大整数,[]=5,∴5≤<6解得:46≤x<1.故答案为46≤x<1.点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.17、2【解析】

解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合.可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.18、4≤m≤1【解析】

设平移后的直线解析式为y=-2x+m.根据平行四边形的性质结合点O、A、C的坐标即可求出点B的坐标,再由平移后的直线与边BC有交点,可得出关于m的一元一次不等式组,解不等式组即可得出结论.【详解】设平移后的直线解析式为y=-2x+m.∵四边形OABC为平行四边形,且点A(2,0),O(0,0),C(1,2),∴点B(3,2).∵平移后的直线与边BC有交点,∴,解得:4≤m≤1.【点睛】本题考查了平行四边形的性质、平移的性质以及两条直线相交的问题,解题的关键是找出关于m的一元一次不等式组.三、解答题(共66分)19、(1)证明见解析;(2)k=±4.【解析】

(1)证明根的判别式△≥0即可;(2)由根与系数的关系可得,,继而利用完全平方公式的变形可得关于k的方程,解方程即可.【详解】(1),,∵,∴Δ≥0,方程总有两个实数根;(2),,∴,∴.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握相关知识是解题的关键.20、(1)x=1或x=-3;(2)或【解析】

(1)根据极差的定义求解.分两种情况:x为最大值或最小值.(2)根据平均数的公式求解即可。【详解】解:(1)∵3+1=4<6,∴x为最大值或最小值.当x为最大值时,有x+1=6,解得x=1.当x为最小值时,3﹣x=6,解得x=﹣3;(2)当x为1时,平均数为.当x为﹣3时,平均数为.【点睛】本题考查了极差的定义和算术平均数,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.21、(1)自变量:三角形的直角边长,因变量:阴影部分的面积;(2)见解析;(3).【解析】

(1)根据定义确定自变量、因变量即可;(2)根据题意计算即可;(3)观察数据表格确定阴影面积变化趋势;

(4)阴影面积为正方形面积减去四个等腰直角三角形面积.【详解】解:(1)在这个变化过程中,自变量:三角形的直角边长,因变量:阴影部分的面积;(2)等腰直角三角形直角边长为6时,阴影面积为202-4××62=328,

等腰直角三角形直角边长为9时,阴影面积为202-4××92=238;三角形的直角边长/12345678910阴影部分的面积/328238(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积由减小到;(4).故答案为:(1)自变量:三角形的直角边长,因变量:阴影部分的面积;(2)见解析;(3).【点睛】本题考查函数关系式,函数求值,涉及到了函数的定义、通过数值变化观察函数值变化趋势.熟练掌握正方形和等腰直角三角形的面积公式是解题的关键.22、(1)日销售量的最大值为120千克;(2)李刚家多宝鱼的日销售量y与上市时间x的函数解析式为.【解析】分析:(1)观察函数图象,找出拐点坐标即可得出结论;(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,分0≤x≤12和12<x≤20,找出图象上点的坐标,利用待定系数法即可求出函数解析式.详解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+1.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.点睛:本题考查了一次函数的应用、一次函数的图象以及待定系数法求函数解析式,解题的关键是:(1)观察函数图象,找出最高点;(2)分段利用待定系数法求出函数解析式.本题属于中档题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.23、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.【解析】

(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;

(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;

(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点B作BE⊥y轴于点E,利用勾股定理即可求出BD的长.【详解】(1)直线y=kx﹣3过点A(1,0),所以,0=1k-3,解得:k=,直线AB为:-3,,解得:,所以,点B的坐标(2,-2)(2)∵∠BOP=45°,△OPB是直角三角形,

∴∠OPB=90°或∠OBP=90°,如图1所示:

①当∠OPB=90°时,△OPB为等腰直角三角形,

∴OP=BP=2,

又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,

∴此时点P的运动时间为2秒;

②当∠OBP=90°时,△OPB为等腰直角三角形,

∴OP=2BP=4,

又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,

∴此时点P的运动时间为4秒.

综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.

(3)∵BP平分△OAB的面积,

∴S△OBP=S△ABP,

∴OP=AP,

∴点P的坐标为(3,0).

设直线BP的解析式为y=ax+b(a≠0),

将B(2,-2),点P(3,0)代入y=ax+b,得:,

解得:,

∴直线BP的解析式为y=2x-1.

当x=0时,y=2x-1=-1,

∴点D的坐标为(0,-1).

过点B作BE⊥y轴于点E,如图2所示.

∵点B的坐标为(2,-2),点D的坐标为(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论