




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市莒南县2024年数学八年级下册期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.众数 B.方差 C.中位数 D.平均数2.已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是A. B. C. D.3.下列调查适合普查的是()A.调查2011年3月份市场上西湖龙井茶的质量B.了解萧山电视台188热线的收视率情况C.网上调查萧山人民的生活幸福指数D.了解全班同学身体健康状况4.某校八班名同学在分钟投篮测试中的成绩如下:,,,,,(单位:个),则这组数据的中位数、众数分别是()A., B., C., D.,5.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分80859095人数2864那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,906.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁7.小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是()A. B. C. D.8.在函数中,自变量必须满足的条件是()A. B. C. D.9.如图,M是的边BC的中点,平分,于点N,延长BN交AC于点B,已知,,,则的周长是()A.43 B.42 C.41 D.4010.如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是()A.7 B.3 C.3.5 D.411.如图,是上一点,交于点,,,若,,则的长是()A.0.5 B.1 C.1.5 D.212.如图,用一根绳子检查一个书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线就可以判断,其数学依据是()A.三个角都是直角的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线相等的平行四边形是矩形D.对角线互相垂直平分的四边形是菱形二、填空题(每题4分,共24分)13.如图,菱形ABCD的两条对角线AC,四交于点O,若AC=6,BD=4,则菱形14.若八个数据x1,x2,x3,……x8,的平均数为8,方差为1,增加一个数据8后所得的九个数据x1,x2,x3,…x8;8的平均数________8,方差为S2________1.(填“>”、“=”、“<”)15.等边三角形的边长是4,则高AD_________(结果精确到0.1)16.若双曲线在第二、四象限,则直线y=kx+2不经过第_____象限。17.如果关于的不等式组无解,则的取值范围是_____.18.如图,在正方形中,点是对角线上一点,连接,将绕点逆时针方向旋转到,连接,交于点,若,,则线段的长为___________.三、解答题(共78分)19.(8分)已知某实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?20.(8分)如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)当AM的值为时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.21.(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.22.(10分)先化简,再求值:﹣÷,其中x=﹣1.23.(10分)化简求值:,从-1,0,1,2中选一个你认为合适的m值代入求值.24.(10分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数:当x≥0时,它们对应的函数值相等,我们把这样的两个函数称作互为友好函数,例如:一次函数y=x-2,它的友好函数为y=-x+2(x<0)(1)直接写出一次函数y=-2x+1的友好函数.(2)已知点A(2,5)在一次函数y=ax-1的友好函数的图象上,求a的值.(3)已知点B(m,32)在一次函数y=12x-1的友好函数的图象上,求m25.(12分)如图①,四边形和四边形都是正方形,且,,正方形固定,将正方形绕点顺时针旋转角().(1)如图②,连接、,相交于点,请判断和是否相等?并说明理由;(2)如图②,连接,在旋转过程中,当为直角三角形时,请直接写出旋转角的度数;(3)如图③,点为边的中点,连接、、,在正方形的旋转过程中,的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.26.在正方形中,过点A引射线,交边于点H(H不与点D重合).通过翻折,使点B落在射线上的点G处,折痕交于E,连接E,G并延长交于F.(1)如图1,当点H与点C重合时,与的大小关系是_________;是____________三角形.(2)如图2,当点H为边上任意一点时(点H与点C不重合).连接,猜想与的大小关系,并证明你的结论.(3)在图2,当,时,求的面积.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义解答即可.【详解】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从大到小排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了;故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、D【解析】
根据菱形的面积列出等式后即可求出y关于x的函数式.【详解】由题意可知:10=xy,∴y=(x>0),故选:D.【点睛】本题考查反比例函数,解题的关键是熟练运用菱形的面积公式,本题属于基础题型.3、D【解析】解:A、B、C范围广,工作量大,不宜采用普查,只能采用抽样调查;D工作量小,没有破坏性,适合普查.故选D.4、D【解析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:把数据从小到大的顺序排列为:2,1,1,8,10;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:D.【点睛】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键5、B【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】∵85分的有8人,人数最多,∴众数为85分;∵处于中间位置的数为第10、11两个数为85分,90分,∴中位数为87.5分.故选B.【点睛】本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6、A【解析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、D【解析】
根据直线所在的象限,确定k,b的符号.【详解】由图象可知,两条直线的一次项系数都是负数,且一条直线与y轴的交点在y轴的正半轴上,b为正数,另一条直线的与y轴的交点在y轴的负半轴上,b为负数,符合条件的方程组只有D.故选D.【点睛】一次函数y=kx+b的图象所在象限与常数k,b的关系是:①当k>0,b>0时,函数y=kx+b的图象经过第一,二,三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一,三,四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一,二,四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二,三,四象限,反之也成立.8、B【解析】
由函数表达式是分式,考虑分式的分母不能为0,即可得到答案.【详解】解:∵函数,∴,∴;故选:B.【点睛】本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为0.9、A【解析】
证明△ABN≌△ADN,得到AD=AB=10,BN=DN,根据三角形中位线定理求出CD,计算即可.【详解】解:在△ABN和△ADN中,∴△ABN≌△ADN,
∴AD=AB=10,BN=DN,
∵M是△ABC的边BC的中点,BN=DN,
∴CD=2MN=8,
∴△ABC的周长=AB+BC+CA=43,
故选A.【点睛】本题考查的是三角形的中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.10、D【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.【详解】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=7,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵EC=3,∴BE=BC-EC=7-3=4,∴AB=4,故选D.【点睛】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.11、B【解析】
根据平行线的性质,得出,,根据全等三角形的判定,得出,根据全等三角形的性质,得出,根据,,即可求线段的长.【详解】∵,∴,,在和中,∴,∴,∵,∴.故选:B.【点睛】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定是解此题的关键.12、C【解析】
根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选:C.【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.二、填空题(每题4分,共24分)13、4【解析】
首先根据菱形的性质可知菱形的对角线垂直平分,然后在Rt△AOD中利用勾股定理求出AD的长,再由菱形的四边形相等,可得菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AO=12AC=3,DO=12在Rt△AOD中,AD=AO∴菱形ABCD的周长为413.故答案为:413.【点睛】本题考查了菱形的性质以及勾股定理的知识,解答本题的关键是掌握菱形的对角线互相垂直且平分以及勾股定理等知识.14、=<【解析】
根据八个数据x1,x2,x3,……x8,的平均数为8,方差为1,利用平均数和方差的计算方法,可求出,,再分别求出9个数的平均数和方差,然后比较大小就可得出结果【详解】解:∵八个数据x1,x2,x3,……x8,的平均数为8,∴∴,∵增加一个数8后,九个数据x1,x2,x3,8…x8的平均数为:;∵八个数据x1,x2,x3,……x8,的方差为1,∴∴∵增加一个数8后,九个数据x1,x2,x3,8…x8的方差为:;故答案为:=,<【点睛】本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.15、3.1【解析】
根据等边三角形的性质及勾股定理进行计算即可.【详解】如图,三角形ABC为等边三角形,AD⊥BC,AB=4,∵三角形ABC为等边三角形,AD⊥BC,∴BD=CD=2,在中,.故答案为:3.1.【点睛】本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.16、三【解析】分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.详解:∵反比例函数在二、四象限,∴k<0,∴y=kx+2经过一、二、四象限,即不经过第三象限.点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.17、a≤1.【解析】
分别求解两个不等式,当不等式“大大小小”时不等式组无解,【详解】解:∴不等式组的解集是∵不等式组无解,即,解得:【点睛】本题考查了求不等式组的解集和不等式组无解的情况,属于简单题,熟悉无解的含义是解题关键.18、【解析】
连接EF,过点E作EM⊥AD,垂足为M,设ME=HE=FH=x,则GH=3-x,从而可得到,于是可求得x的值,最后在Rt△AME中,依据勾股定理可求得AE的长.【详解】解:如图所示:连接EF,过点E作EM⊥AD,垂足为M.∵ABCD为正方形,EM⊥AD,∠EDF=90°,AD=BC=CD=DG+CG=5,∴△MED和△DEF均为等腰直角三角形.∵DE=DF,∠EDH=∠FDH=45°,∴DH⊥EF,EH=HF,∴FH∥BC.设ME=HE=FH=x,则GH=3﹣x.由FH∥BC可知:,即,解得:,∴.在Rt△AME中,.故答案为:.【点睛】本题主要考查的是正方形的性质、等腰直角三角形的性质和判定、平行线分线段成比例定理、勾股定理的应用,求得ME的长是解题的关键.三、解答题(共78分)19、学校需要投入10800元买草坪【解析】
连接CD,在直角三角形ACD中可求得CD的长,由BD、CB、CD的长度关系可得三角形DBC为一直角三角形,BC为斜边;由此看,四边形ABCD由Rt△ACD和Rt△DBC构成,然后求直角三角形的面积之和即可.【详解】解:连接CD,在RtΔACD中,在ΔCBD中,,而即所以∠BDC=90°则=5所以需費用36×300=10800(元).答:学校需要投入10800元买草坪..【点睛】本题考查了勾股定理的应用,通过勾股定理判定三角形直角三角形,是解答本题的关键.20、(1)见解析(2)当AM=2时,说明四边形是矩形【解析】
(1)根据菱形的性质可得AB∥CD,根据两直线平行,内错角相等可得∠NDE=∠MAE,根据对顶角相等可得∠DEN=∠AEM,根据中点的定义求出DE=AE,然后利用“角边角”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=AM,然后利用一组对边平行且相等的四边形是平行四边形证明;
(2)首先证明△AEM是等边三角形,进而得到AE=ED=EM,利用三角形一边上的中线等于斜边一半判断出△AMD是直角三角形,进而得出四边形AMDN是矩形.【详解】(1)∵点E是AD边的中点,∴AE=ED,∵AB∥CD,∴∠NDE=∠MAE,在△NDE和△MAE中,∠NDE=∠MAEDE=AE∴△NDE≌△MAE(ASA),∴ND=AM,∵ND∥AM,∴四边形AMDN是平行四边形;(2)当AM=2时,说明四边形是矩形.∵E是AD的中点,∴AE=2,∵AE=AM,∠EAM=60°,∴△AME是等边三角形,∴AE=EM,∴AE=ED=EM,∴∠AMD=90°,∵四边形ABCD是菱形,故当AM=2时,四边形AMDN是矩形.【点睛】本题考查矩形的判定、菱形的性质和平行四边形的判定,解题的关键是掌握矩形的判定、菱形的性质和平行四边形的判定.21、(1)证明见解析;(2)证明见解析.【解析】
(1)在□ABCD中,AB∥CD,AB=CD,∵E、F分别为边AB、CD的中点,∴DF=CD,BE=AB,∴DF=BE,DF∥BE,∴四边形BEDF为平行四边形,∴DE∥BF;(2)∵AG∥DB,∴∠G=∠DBC=90°,∴△DBC为直角三角形,又∵F为边CD的中点,∴BF=CD=DF,又∵四边形BEDF为平行四边形,∴四边形BEDF为菱形.【点睛】本题主要考查了平行四边形的性质、菱形的判定,直角三角形中斜边中线等于斜边一半,解题的关键是掌握和灵活应用相关性质.22、【解析】分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.详解:原式=﹣•=﹣==当x=﹣1时,原式==.点睛:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23、,【解析】
根据分式的混合运算法则运算即可,注意m的值只能取1.【详解】解:原式===把m=1代入得,原式=.【点睛】本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.24、(1)y=2x-1(x<0)-2x+1(x≥0);(2)2;(3)-1【解析】
(1)根据友好函数的定义解答即可;(2)因为-2<0,所以把A(-2,5)代入y=-ax+1中即可求得a的值;(3)分m<0和m≥0两种情况求m的值即可.【详解】(1)y=-2x+1的友好函数为y=2x-1(x<0)(2)解:因为-2<0,所以把A(-2,5)代入y=-ax+1中得,-a×(-2)+1=5,∴a=2;(3)当m<0时,把B(m,32)代入y=-32=-∴m=-1;当m≥0时,把B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农药批发商的采购策略优化考核试卷
- 盾构机施工中的安全与健康管理考核试卷
- 电气设备在智能电网储能设备管理中的应用考核试卷
- 炸药及火工品的安全生产标准化与规范化考核试卷
- 广告创意与情感营销结合考核试卷
- 海洋工程装备海洋环境保护策略考核试卷
- 湖南省新高考教学教研联盟2025届高三下学期第二次联考语文试卷及参考答案
- 上海市虹口区2025届高三高考二模思想政治试卷(含答案)
- 2025如何撰写商业店铺租赁合同协议书
- 2025版合同:国际专利技术转让协议
- 让每一个闪光在每一天成长-四年级期中家长会 课件
- 蔬菜大棚建设投标方案技术标范本
- 国开电大2024秋《经济法学》形考任务1-4参考答案
- 2024年广西壮族自治区中考地理试题含答案
- 汉语口语速成第七课课件
- GB/T 3487-2024乘用车轮辋规格系列
- 五年级口算题卡每天100题带答案
- 七律长征读书分享 课件
- 自考00808商法押题及答案解析
- 语文教研专题讲座讲稿
- 2024年新物业管理技能及理论知识考试题与答案
评论
0/150
提交评论