版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市官渡区2024年数学八年级下册期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列分式中,最简分式是A. B. C. D.2.若菱形的周长为8,高为1,则菱形两邻角的度数比为()A.3∶1 B.4∶1 C.5∶1 D.6∶13.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y轴上是否存在点P,使得△MNP为等腰直角三角形,则符合条件的点P有(提示:直角三角形斜边上的中线等于斜边的一半)()A.2个 B.3个 C.4个 D.5个4.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5 C.2.5 D.2.85.如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是()A.△CDF≌△EBCB.∠CDF=∠EAFC.CG⊥AED.△ECF是等边三角形6.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC; B.∠B=∠C;∠A=∠D,C.AB=CD,CB=AD; D.AB=AD,CD=BC7.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A. B. C. D.8.若直线y=ax+b的图象经过点(1,5),则关于的方程的解为()A. B. C. D.9.矩形,菱形,正方形都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线平分一组对角10.如图,在R△ABC中,CD、CE分别是斜边AB上的中线和高,CD=8,CE=5,则Rt△ABC的面积是()A.80 B.60 C.40 D.20二、填空题(每小题3分,共24分)11.如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.12.既是矩形又是菱形四边形是________.13.计算:=_____________.14.已知是一元二次方程的一根,则该方程的另一个根为_________.15.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有_____(只填序号).16.在函数y=x+2x中,自变量x的取值范围是_______17.如图,小明用三个等腰三角形(图中①②③)拼成了一个平行四边形ABCD,且,则=________度18.计算:-=________.三、解答题(共66分)19.(10分)已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在AC上,且AE=CF,AH=CG.求证:四边形EGFH是平行四边形.20.(6分)某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)扇形统计图中的值为______,的值为______.(2)扇形统计图中参加综合实践活动天数为6天的扇形的圆心角大小为______.(3)请你估计该市初二学生每学期参加综合实践活动的平均天数大约是多少天(精确到个位)?(4)若全市初二学生共有90000名学生,估计有多少名学生一个学期参加综合社会活动的天数不少于5天?21.(6分)如图,在矩形中,、分别是、的中点,、分别是、的中点.求证:;四边形是什么样的特殊四边形?请说明理由.22.(8分)感知:如图(1),已知正方形ABCD和等腰直角△EBF,点E在正方形BC边上,点F在AB边的延长线上,∠EBF=90°,连结AE、CF.易证:∠AEB=∠CFB(不需要证明).探究:如图(2),已知正方形ABCD和等腰直角△EBF,点E在正方形ABCD内部,点F在正方形ABCD外部,∠EBF=90°,连结AE、CF.求证:∠AEB=∠CFB应用:如图(3),在(2)的条件下,当A、E、F三点共线时,连结CE,若AE=1,EF=2,则CE=______.23.(8分)(1)解分式方程:(2)解不等式组,并在数轴上表示其解集.24.(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.58.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.25.(10分)如图,在中,点是边的一个动点,过点作,交的平分线于点,交的外角平分线于点,(1)求证:;(2)当点位于边的什么位置时四边形是矩形?并说明理由.26.(10分)计算:(1)(2)(3)(4)
参考答案一、选择题(每小题3分,共30分)1、C【解析】
最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A、,不符合题意;B、,不符合题意;C、是最简分式,符合题意;D、,不符合题意;故选C.【点睛】本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.2、C【解析】
先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.【详解】解:如图所示:∵四边形ABCD是菱形,菱形的周长为8,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=AB,∴∠B=30°,∴∠DAB=150°,∴∠DAB:∠B=5:1;故选:C.【点睛】本题考查了菱形的性质、含30°角的直角三角形的判定;熟练掌握菱形的性质和含30°角的直角三角形的判定是解决问题的关键.3、C【解析】
根据等腰直角三角形的定义,由题意,应分两类情况讨论:当MN为直角边时和当MN为斜边时点P的位置的求法.【详解】当M运动到(-1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的P点;又当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有-x=-(2x+3),解得x=-3,所以点P坐标为(0,-3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有-x=-(2x+3),化简得-2x=-2x-3,这方程无解,所以这时不存在符合条件的P点;又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有-x=(2x+3),解得x=-,这时点P的坐标为(0,-).因此,符合条件的点P坐标是(0,0),(0,-),(0,-3),(0,1).故答案选C,【点睛】本题主要采用分类讨论法,来求得符合条件的点P坐标.题中没有明确说明哪个边是直角边,哪条边是斜边,所以分情况说明,在证明时,注意点M的坐标表示方法以及坐标与线段长之间的转换.4、C【解析】
∵EO是AC的垂直平分线,∴AE=CE.设CE=x,则ED=AD﹣AE=4﹣x.,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4-x)2,解得x=2.5,CE的长为2.5故选C5、C【解析】
A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,∵△ABE、△ADF都是等边三角形,∴AD=DF,AB=EB,∠ADF=∠ABE=60°,∴DF=BC,CD=BC,∴∠CDF=360°-∠ADC-60°=300°-∠ADC,∠EBC=360°-∠ABC-60°=300°-∠ABC,∴∠CDF=∠EBC,在△CDF和△EBC中,DF=BC,∠CDF=∠EBC,CD=EB,∴△CDF≌△EBC(SAS),故A正确;B.在平行四边形ABCD中,∠DAB=180°-∠ADC,∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,∴∠CDF=∠EAF,故B正确;C..当CG⊥AE时,∵△ABE是等边三角形,∴∠ABG=30°,∴∠ABC=180°-30°=150°,∵∠ABC=150°无法求出,故C错误;D.同理可证△CDF≌△EAF,∴EF=CF,∵△CDF≌△EBC,∴CE=CF,∴EC=CF=EF,∴△ECF是等边三角形,故D正确;故选C.点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.6、C【解析】
根据平行四边形的判定方法逐项判断即可.【详解】解:A、AB∥CD,AD=BC,如等腰梯形,不能判断是平行四边形,故本选项错误;B、∠B=∠C,∠A=∠D,不能判断是平行四边形,如等腰梯形,故本选项错误;C、AB=CD,CB=AD,两组对边分别相等,可判断是平行四边形,正确;D、AB=AD,CD=BC,两组邻边分别相等,不能判断是平行四边形;故选C.【点睛】本题考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.7、A【解析】由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.8、C【解析】
将点(1,5)代入函数解析式,即可得出答案.【详解】∵直线y=ax+b经过点(1,5),∴有5=a+b从而有方程ax+b=5的解为x=1故选C.【点睛】本题考查的是一次函数,比较简单,需要熟练掌握一次函数与一元一次方程的关系并灵活运用.9、C【解析】
利用矩形、菱形和正方形的性质对各选项进行判断.【详解】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:C.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.10、C【解析】
根据直角三角形斜边上中线的性质求出,根据三角形的面积公式求出即可.【详解】解:在中,是斜边上的中线,,,,的面积,故选:.【点睛】本题考查了直角三角形斜边上中线的性质和三角形的面积,能根据直角三角形斜边上中线的性质求出的长是解此题的关键.二、填空题(每小题3分,共24分)11、1.【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.【详解】解:由折叠可得,EF=AE,BF=AB.∵△FDE的周长为8,△FCB的周长为22,∴DF+AD=8,FC+CB+AB=22,∴平行四边形ABCD的周长=8+22=30,∴AB+BC=BF+BC=15,又∵△FCB的周长=FC+CB+BF=22,∴CF=22-15=1,故答案为:1.【点睛】本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.12、正方形【解析】
根据正方形的判定定理即可得到结论.【详解】既是矩形又是菱形的四边形是正方形,故答案为正方形.【点睛】本题考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.13、【解析】
根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.14、-2【解析】
由于该方程的一次项系数是未知数,所以求方程的另一解根据根与系数的关系进行计算即可.【详解】设方程的另一根为x1,由根与系数的关系可得:1×x1=-2,∴x1=-2.故答案为:-2.【点睛】本题考查一元二次方程根与系数的关系,明确根与系数的关系是解题的关键.15、①②④⑤【解析】
①②∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF•AD≠1,所以选项③不正确;④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤在Rt△FEC中,EG⊥FC,∴=FG•CG,cos∠FCE=,∴CG===1,∴DG=CG,∴=FG•DG,故选项⑤正确;本题正确的结论有4个,故答案为①②④⑤.16、x≥﹣2且x≠0【解析】根据题意得x+2≥0且x≠0,即x≥-2且x≠0.17、72或【解析】分析:分两种情况讨论,分别构建方程即可解决问题.详解:由题意可知:AD=DE,∴∠DAE=∠DEA,设∠DAE=∠DEA=x.∵四边形ABCD是平行四边形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x.①AE=AB时,若BE=BC,则有∠BEC=∠C,即(180°﹣x)=2x,解得:x=36°,∴∠C=72°;若EC=EB时,则有∠EBC=∠C=2x.∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得:x=,∴∠C=,②EA=EB时,同法可得∠C=72°.综上所述:∠C=72°或.故答案为72°或.点睛:本题考查了平行四边形的性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18、1【解析】
根据算术平方根和立方根定义,分别求出各项的值,再相加即可.【详解】解:因为,所以.故答案为1.【点睛】本题考核知识点:算术平方根和立方根.解题关键点:熟记算术平方根和立方根定义,仔细求出算术平方根和立方根.三、解答题(共66分)19、见解析【解析】
先根据平行四边形的性质得到AD∥BC,进而有∠EAH=∠FCG,再证明△AHE≌△CGF,利用全等三角形的性质和直线平行的判定得到FG∥EH,再根据平行四边形的判定定理即可证明;【详解】证明:∵ABCD为平行四边形,∴AD∥BC(平行四边形对边平行)∴∠EAH=∠FCG(两直线平行,内错角相等).又∵AE=CF,AH=CG,∴△AHE≌△CGF(SAS).∴EH=FG,∠FGH=∠EHG(全等三角形对应边相等,对应角相等).∴FG∥EH(内错角相等,两直线平行).∴四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形).【点睛】本题主要考查了平行四边形的判定与性质、三角形全等的判定与性质,掌握平行四边形的性质与判定定理是解题的关键.20、解:(1);;(2);(3)估计该市初二学生每学期参加综合实践活动的平均天数约是4天;(4)估计有31500名学生一个学期参加综合社会活动的天数不少于5天.【解析】
(1)结合两图,先求出被调查的总人数,再求出各部分的百分比,从而得出答案;(2)用360°乘以活动时间为6天的百分比即可;(3)根据加权平均数公式求解可得.(4)用样本估计总体,即可计算.【详解】解:(1)∵被调查的总人数为30÷15%=200人∴活动天数为4天的百分比b=60÷200=30%,活动天数为6天的百分比=20÷200=10%,活动天数为5天的百分比a=1-(20%+15%+5%+10%+30%)=1-80%=20%故答案为:20%;30%,(2)∵活动天数为6天的百分比是10%,∴活动天数为6天的扇形的圆心角=360°×10%=36°.故答案为:36°(3)以各部分的百分比为权,得,∴估计该市初二学生每学期参加综合实践活动的平均天数约是4天.(4),∴估计有31500名学生一个学期参加综合社会活动的天数不少于5天.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)证明见解析(2)菱形【解析】
(1)连接MN,证明四边形AMNB是矩形,得出∠MNB=90°,根据直角三角形斜边上的中线性质即可得出结论;
(2)先证明四边形MPNQ是平行四边形,再由(1)即可得出结论.【详解】证明:连接,如图所示:∵四边形是矩形,∴,,,∵、分别是、的中点,∴,,∴,∴四边形是平行四边形,∴平行四边形是矩形,∴,∵是的中点,∴;四边形是菱形;理由如下:解:∵,,∴四边形是平行四边形,∴,,又∵、分别是、的中点,∴,∴四边形是平行四边形,由得,∴四边形时菱形.【点睛】本题考查了菱形与矩形的性质,解题的关键是熟练的掌握菱形的判定与矩形的性质.22、感知:见解析;探究:见解析;应用:.【解析】
感知:先判断出∠ABC=∠CBF=90°,AB=BC,进而判断出BE=BF,得出△ABE≌△CBF(SAS)即可得出结论;探究:先判断出∠ABE=∠CBF,进而得出△ABE≌△CBF(SAS),即可得出结论;应用:先求出CF=1,再判断出∠CFE=90°,利用勾股定理即可得出结论.【详解】解:感知:∵四边形ABCD是正方形,∴∠ABC=∠CBF=90°,AB=BC,∵△BEF是等腰直角三角形,∴BE=BF,∴△ABE≌△CBF(SAS),∴∠AEB=∠CFB;探究:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°=∠ABC,∴∠ABE=∠CBF,∴△ABE≌△CBF(SAS),∴∠AEB=∠CFB;应用:由(2)知,△ABE≌△CBF,∠BFC=∠BEA,∴CF=AE=1,∵△BEF是等腰直角三角形,∴∠BFE=∠BEF=45°,∴∠AEB=135°,∴∠BFC=135°,∴∠CFE=∠BFC-∠BFE=90°,在Rt△CFE中,CF=1,EF=2,根据勾股定理得,,故答案为:.【点睛】此题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出△ABE≌△CBF(SAS),是解本题的关键.23、(1)原方程无解;(2)x≤1,数轴见解析;【解析】
(1)利用解分式方程的一般步骤求解即可.(2)求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年人力资源担保用工协议样式版B版
- 2024年专属定制人力资源服务合作合同一
- (2024版)船舶买卖合同(含2024版规定)
- 2024年专业托管清洁服务协议样本版
- 江南大学《蛋白质纯化技术(含实验)》2022-2023学年第一学期期末试卷
- 2024年商铺合作经营标准合同书版
- 佳木斯大学《基本乐理1》2021-2022学年第一学期期末试卷
- 暨南大学《人寿与健康保险》2021-2022学年第一学期期末试卷
- 暨南大学《宏观经济学》2023-2024学年第一学期期末试卷
- 二零二四年度商务产业园委托运营协议之绩效评估标准3篇
- 常用机械制图标注(实例)
- 10KV高压开关柜操作(培训课件)
- 专用车项目投资计划及资金方案(参考范文)
- 幼儿园小班读书计划三篇
- IATF16949标准
- NUDD新独难异失效模式预防检查表
- 如何做好工程项目投资管理
- 纯电动乘用车换电电池包技术要求
- 口袋妖怪(黑白)1-649全PM资料Excel版
- The silent way沉默法
- (精选)蜘蛛人专项施工方案
评论
0/150
提交评论