版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省扬州市广陵区梅岭中学八年级下册数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.某地开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么所列方程正确的是()A. B.C. D.2.对于函数y=-x+1,下列结论正确的是()A.它的图象不经过第四象限 B.y的值随x的增大而增大C.它的图象必经过点(0,1) D.当x>2时,y>03.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④直角三角形的两个锐角互余;⑤同角或等角的补角相等.其中真命题的个数是()A.2个 B.3个 C.4个 D.5个4.已知△ABC的边长分别为5,7,8,则△ABC的面积是()A.20 B.10 C.10 D.285.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~3月份利润的平均数是120万元B.1~5月份利润的众数是130万元C.1~5月份利润的中位数为120万元D.1~2月份利润的增长快于2~3月份利润的增长6.小宇同学投擦10次实心球的成绩如表所示:成绩(m)11.811.91212.112.2频数22231由上表可知小宇同学投掷10次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m7.一次函数的图像经过点,且的值随值的增大而增大,则点的坐标可以为()A. B. C. D.8.甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:甲乙丙丁平均数(cm)561560561560方差s23.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁9.若一次函数的函数值y随x的值增大而增大,且此函数的图象不经过第二象限,则k的取值范围是()A. B. C. D.或10.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0) B.(8,-8) C.(-8,8) D.(0,16)二、填空题(每小题3分,共24分)11.在平面直角坐标系中,△ABC上有一点P(0,2),将△ABC向左平移2个单位长度,再向上平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是_____.12.若在实数范围内有意义,则的取值范围是____________.13.已知点(2,7)在函数y=ax+3的图象上,则a的值为____.14.一个多边形每个外角都是,则这个多边形是_____边形.15.如图∆DEF是由∆ABC绕着某点旋转得到的,则这点的坐标是__________.16.如果一组数据的方差为,那么这组数据的标准差是________.17.某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.18.如图,在矩形ABCD中,,,将矩形沿AC折叠,则重叠部分的面积为______.三、解答题(共66分)19.(10分)如图,点为平面直角坐标系的原点,点在轴的正半轴上,正方形的边长是3,点在上,且.将绕着点逆时针旋转得到.(1)求证:;(2)在轴上找一点,使得的值最小,求出点的坐标.20.(6分)阅读以下例题:解不等式:(x4)(x1)1解:①当x41,则x11即可以写成:解不等式组得:②当若x41,则x11即可以写成:解不等式组得:综合以上两种情况:不等式解集:x1或.(以上解法依据:若ab1,则a,b同号)请你模仿例题的解法,解不等式:(1)(x1)(x2)1;(2)(x2)(x3)1.21.(6分)(1)计算:(2)解方程:-1=22.(8分)在正方形中,过点A引射线,交边于点H(H不与点D重合).通过翻折,使点B落在射线上的点G处,折痕交于E,连接E,G并延长交于F.(1)如图1,当点H与点C重合时,与的大小关系是_________;是____________三角形.(2)如图2,当点H为边上任意一点时(点H与点C不重合).连接,猜想与的大小关系,并证明你的结论.(3)在图2,当,时,求的面积.23.(8分)“2018年某明星演唱会”于6月3日在某市奥体中心举办.小明去离家300的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有30分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小明骑车的时间比跑步的时间少用了5分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小明跑步的平均速度;(2)如果小明在家取票和寻找“共享单车”共用了4分钟,他能否在演唱会开始前赶到奥体中心?说明理由.24.(8分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
A型智能手表
B型智能手表
进价
130元/只
150元/只
售价
今年的售价
230元/只
25.(10分)如图所示,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上,判断△ABC和△DEF是否相似,并说明理由.26.(10分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:设原计划每天挖x米,则原计划用时为:天,实际用时为:天,∴,故选:C.【点睛】本题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.2、C【解析】
根据一次函数的图象及性质逐一进行判断即可.【详解】A,函数图象经过一、二、四象限,故该选项错误;B,y的值随x的增大而减小,故该选项错误;C,当时,,故该选项正确;D,当时,,故该选项错误;故选:C.【点睛】本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.3、B【解析】
解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题②两点之间,线段最短,正确,为真命题;命题③相等的角是对顶角,错误,为假命题;命题④直角三角形的两个锐角互余,正确,为真命题;命题⑤同角或等角的补角相等,正确,为真命题,故答案选B.考点:命题与定理.4、C【解析】
过A作AD⊥BC于D,根据勾股定理列方程得到BD,然后根据三角形的面积公式即可得到结论.【详解】如图,∵AB=5,AC=7,BC=8,过A作AD⊥BC于D,∴AB2-BD2=AC2-CD2=AD2,∴52-BD2=72-(8-BD)2,解得:BD=,∴AD=,∴△ABC的面积=10,故选C.【点睛】本题考查了勾股定理,三角形的面积的计算,熟练掌握勾股定理是解题的关键.5、B【解析】
本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.【详解】A.1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=,排除B.1~5月份的利润分别是100,110,130,115,130,众数为130,符合.C.1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.D.1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.故答案为B【点睛】本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.众数:出现次数最多的数据为众数.6、D【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:由上表可知小宇同学投掷10次实心球成绩的众数是12.1m,中位数是=12(m),故选:D.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7、A【解析】
y的值随x值的增大而増大,可知函数y=kx-1图象经过第一、三、四象限,结合选项判断点(1,-3)符合题意.【详解】解:y的值随x值的增大而増大,∴k>0,∴函数图象经过第一、三、四象限,点(1,-3)、点(5,3)和点(5,-1)符合条件,当经过(5,-1)时,k=0,当经过(1,-3)时,k=-2,当经过(5,3)时,k=,故选:A.【点睛】本题考查一次函数图象及性质;熟练掌握一次函数图象性质,点与函数图象的关系是解题的关键.8、A【解析】试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、C【解析】
先根据函数y随x的增大而增大可确定1−2k>1,再由函数的图象不经过第二象限可得图象与y轴的交点在y轴的负半轴上或原点,即−k≤1,进而可求出k的取值范围.【详解】解:∵一次函数y=(1−2k)x−k的函数值y随x的增大而增大,且此函数的图象不经过第二象限,∴1−2k>1,且−k≤1,解得,故选:C.【点睛】本题主要考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1;一次函数y=kx+b图象与y轴的负半轴相交⇔b<1;一次函数y=kx+b图象过原点⇔b=1.10、C【解析】
根据正方形的性质,依次可求A2(2,0),A3(2,2),A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8).【详解】解:∵O(0,0),A(0,1),∴A1(1,1),∴正方形对角线OA1=,∴OA2=2,∴A2(2,0),∴A3(2,2),∴OA3=2,∴OA4=4,∴A4(0,-4),A5(-4,-4),A6(-8,0),A7(-8,8);故选:C.【点睛】本题考查点的规律;利用正方形的性质,结合平面内点的坐标,探究An的坐标规律是解题的关键.二、填空题(每小题3分,共24分)11、(﹣2,5)【解析】
平移的规律:平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:由点的平移规律可知,此题规律是:向左平移2个单位再向上平移3个单位,照此规律计算可知得到的新三角形上与点P相对应的点的坐标是(0﹣2,2+3),即(﹣2,5).故答案为(﹣2,5).【点睛】本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.12、且.【解析】分析:根据分式有意义和二次根式有意义的条件解题.详解:因为在实数范围内有意义,所以x≥0且x-1≠0,则x≥0且x≠1.故答案为x≥0且x≠1.点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.13、1.【解析】
利用待定系数法即可解决问题;【详解】∵点(1,7)在函数y=ax+3的图象上,∴7=1a+3,∴a=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.14、十二【解析】
利用任何多边形的外角和是360°即可求出答案.【详解】多边形的外角的个数是360÷30=1,所以多边形的边数是1.故答案为:十二.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.15、(0,1).【解析】试题分析:根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.试题解析:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).考点:坐标与图形变化-旋转.16、【解析】
求出9的算术平方根即可.【详解】∵S²=9,S==3,故答案为3【点睛】本题考查的是标准差的计算,计算标准差需要先知道方差,标准差即方差的算术平方根.17、78【解析】
直接利用加权平均数的求法进而得出答案.【详解】由题意可得:70×50%+90×30%+80×20%=78(分).故答案为:78【点睛】此题考查加权平均数,解题关键在于掌握运算法则18、1【解析】
首先证明AE=CE,根据勾股定理列出关于线段AE的方程,解方程求出AE的长问题即可解决.【详解】解:由题意得:∠DCA=∠ACE,∵四边形ABCD为矩形,∴DC//AB,∠B=90°,∴∠DCA=∠CAE,∴∠CAE=∠ACE,∴AE=CE(设为x),则BE=8-x,由勾股定理得:x2=(8-x)2+42,解得:x=5,∴S△AEC=×5×4=1,故答案为1.【点睛】本题考查了矩形的性质、折叠的性质、勾股定理的应用等,熟练掌握和灵活运用相关的性质及定理是解题的关键.本题也要注意数形结合思想的运用.三、解答题(共66分)19、(1)见解析;(2)点坐标为【解析】
(1)根据直角坐标系的特点证明=90°即可;(2)作点关于轴对称点,连接交轴于点,即为所求,再根据待定系数法确定函数关系式求出直线EF的解析式,再求出P点.【详解】(1)∵是由旋转而来,∴.又0,∴,即.(2)如图所示,作点关于轴对称点,连接交轴于点.∵点和点关于轴成轴对称,∴.∴.且,,三点在一条直线上的时候最小即取得最小值.∵,,∴,,设直线的表达式为.,两点坐标代入得,解得将∴.∵点为直线与轴的交点.∴令,即得故点坐标为【点睛】此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.20、(1)x>2或x<-1;(2)-2<x<2.【解析】
(1)根据例题可得:此题分两个不等式组和,分别解出两个不等式组即可;(2)根据两数相乘,异号得负可得此题也分两种情况和解出不等式组即可.【详解】解:(1)当x+1>1时,x-2>1,可以写成,解得:x>2;当x+1<1时,x-2<1,可以写成,解得:x<-1,
综上:不等式解集:x>2或x<-1;(2)当x+2>1时,x-2<1,可以写成,解得-2<x<2;当x+2<1时,x-2>1,可以写成,解得:无解,
综上:不等式解集:-2<x<2.【点睛】此题主要考查了不等式的解法,关键是正确理解例题的解题根据,然后再进行计算.21、(1)3+2;(2)原方程无解【解析】
(1)利用乘法公式展开,然后合并即可;(2)先去分母把方程化为(x-2)2-(x+2)(x-2)=16,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式=5+5-3-2=3+2;(2)去分母得(x-2)2-(x+2)(x-2)=16,解得x=-2,检验:当x=-2时,(x+2)(x-2)=0,则x=-2为原方程的增根,所以原方程无解.【点睛】本题考查了二次根式的混合运算及分式方程的解法:先进行二次根式的乘法运算,再合并同类二次根式即可.解分式方程最关键的是把分式方程化为整式方程.22、(1);等腰直角.(2)详见解析;(3)【解析】
(1)连接AF,由正方形的性质及折叠的性质已知,由全等可知,CF=CE,结合可确定是等腰直角三角形;(2)连接AF,由正方形的性质及折叠的性质已知,即证;(3)设,依据题意及(2)的结论用含x的式子确定出的三边长,根据勾股定理求出x的值,即可求面积.【详解】解:(1)连接,∵四边形是正方形,∴,.由翻折可知,.∵,∴.…∴.又平分∴AC垂直平分EF∴∴是等腰直角三角形.故答案为:;等腰直角.(2)连接,∵四边形是正方形的对角线,∴,.由翻折可知,.∵,∴.…∴.…(3)设,则,.在中,,即.解得,即的长为.∴;…∴.…【点睛】本题考查了正方形的综合问题,涉及的知识点有正方形的性质、全等三角形的证明、勾股定理,灵活将正方形的性质与三角形的知识相结合是解题的关键.23、(1)小明跑步的平均速度为20米/分钟.(2)小明能在演唱会开始前赶到奥体中心.【解析】
(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小明骑车的时间比跑步的时间少用了5分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小明跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的4分钟即可求出小明赶回奥体中心所需时间,将其与30进行比较后即可得出结论.【详解】解:(1)设小明跑步的平均速度为x米/分钟,则小明骑车的平均速度为1.5x米/分钟,根据题意得:-=5,解得:x=20,经检验,x=20是原分式方程的解.答:小明跑步的平均速度为20米/分钟.(2)小明跑步到家所需时间为300÷20=15(分钟),小明骑车所用时间为15-5=10(分钟),小明从开始跑步回家到赶回奥体中心所需时间为15+10+4=29(分钟),∵29<30,∴小明能在演唱会开始前赶到奥体中心.【点睛】本题考查了分式方程的应用,解题的关键是:(1)根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,列出关于x的分式方程;(2)根据数量关系,列式计算.24、(1)180元;(2)方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【解析】
(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+60)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型a只,则B型(100-a)只,获利y元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.【详解】解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+60)元,根据题意得,解得:x=180,经检验,x=180是原方程的根,答:今年A型智能手表每只售价180元;(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100-a)只,根据题意得,W=(180-130)a+(230-150)(100-a)=-30a+8000,∵100-a≤3a,∴a≥25,∵-30<0,W随a的增大而减小,∴当a=25时,W增大=-30×25+8000=7250元,此时,进货方案为新进A型手表25只,新进B型手表75只,答:方案为A型手表25只,B型手表75只,获利最多,最大利润是7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厦门2024年项目分包合同样本3篇
- 高三上学期语文教学工作总结
- 评审材料真实性保证
- 语文学习利器西红柿与培智的完美融合
- 购货合同与购销合同的合同仲裁
- 购销合同书写技巧与细节讲解指南案例
- 购销合同更动通知
- 贴心维护技术服务合同
- 足浴店加盟合同协议
- 跟着地图去旅行
- 收音机FM指标测试方法3页
- 兽药大鼠传统致畸试验指导原则
- 英格索兰空压机控制器操作说明书
- 苏州商业市场市调简析报告
- 论现代企业人力资源管理中激励机制的应用以腾讯公司为例
- CRRT治疗剂量的计算
- 量子力学公式
- (完整)风景园林概论知识点,推荐文档
- 新苏教版2021-2022四年级科学上册《15生活中的电》教案
- 小学语文课标目标解读PPT学习教案
- 烟草专卖局(公司)员工考核管理办法
评论
0/150
提交评论