2024年江苏省无锡市锡中学实验学校八年级下册数学期末学业水平测试试题含解析_第1页
2024年江苏省无锡市锡中学实验学校八年级下册数学期末学业水平测试试题含解析_第2页
2024年江苏省无锡市锡中学实验学校八年级下册数学期末学业水平测试试题含解析_第3页
2024年江苏省无锡市锡中学实验学校八年级下册数学期末学业水平测试试题含解析_第4页
2024年江苏省无锡市锡中学实验学校八年级下册数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江苏省无锡市锡中学实验学校八年级下册数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.总书记提出了未来五年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107 B.11.7×106 C.0.117×107 D.1.17×1082.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差3.将直线平移后,得到直线,则原直线()A.沿y轴向上平移了8个单位 B.沿y轴向下平移了8个单位C.沿x轴向左平移了8个单位 D.沿x轴向右平移了8个单位4.已知菱形的两条对角线长分别为6和8,则它的周长为()A.10 B.14 C.20 D.285.如图,△ABC称为第1个三角形,它的周长是1,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,以此类推,则第2019个三角形的周长为()A. B. C. D.6.一元二次方程x(x﹣1)=0的解是()A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=17.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号

220

225

230

235

240

245

250

数量(双)

3

5

10

15

8

3

2

对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数 B.众数 C.中位数 D.方差8.已知y是x的正比例函数,且函数图象经过点,则在此正比例函数图象上的点是()A. B. C. D.9.如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A.1 B. C.2 D.10.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm11.已知x=+1,y=-1,则的值为()A.20 B.16 C.2 D.412.如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2 B.3 C.1 D.1.5二、填空题(每题4分,共24分)13.已知xy=﹣1,x+y=2,则x3y+x2y2+xy3=_____.14.若代数式在实数范围内有意义,则实数x的取值范围是______.15.方程的解为_________.16.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.17.将直线向上平移个单位后,可得到直线_______.18.若二次根式有意义,则实数m的取值范围是_________.三、解答题(共78分)19.(8分)如图,中,延长到点,延长到点,使,连接、.求证:四边形是平行四边形.20.(8分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画出线段EF,使得EF的长为,用AB、CD、EF三条线段能否构成直角三角形,请说明理由.21.(8分)学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题.(1)该班共有名学生;(2)在图(1)中,将表示“步行”的部分补充完整;(3)扇形图中表示骑车部分所占扇形的圆心角是.(4)如果小明所在年级共计800人,请你根据样本数据,估计一下该年级步行上学的学生人数是多少?22.(10分)中国古代有着辉煌的数学成就,《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,求他选中《九章算术》的概率;(2)小聪拟从这4部数学名著中选择2部作为假课外拓展学习内容,用列表或树状图求选中的名著恰好是《九章算术》和《周牌算经》的概率.23.(10分)先阅读下面的内容,再解决问题:问题:对于形如这样的二次三项式,可以用公式法将它分解成的形式.但对于二次三项式,就不能直接运用公式了.此时,我们可以在二次三项式中先加上一项,使它与成为一个完全平方式,再减去,整个式子的值不变,于是有:像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:______;(2)若△ABC的三边长是a,b,c,且满足,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式有最大值?并求出这个最大值.24.(10分)已知,在平面直角坐标系中,直线经过点和点.(1)求直线所对应的函数表达式.(2)若点在直线上,求的值.25.(12分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)参加此次研学旅行活动的老师有人;学生有人;租用客车总数为辆;(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.26.如图,Rt△ABC中,分别以AB、AC为斜边,向△ABC的内侧作等腰Rt△ABE、Rt△ACD,点M是BC的中点,连接MD、ME.(1)若AB=8,AC=4,求DE的长;(2)求证:AB-AC=2DM.

参考答案一、选择题(每题4分,共48分)1、A【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:11700000=1.17×1.

故选A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、A【解析】

7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.3、A【解析】

利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】∵将直线平移后,得到直线,设平移了a个单位,

∴=,

解得:a=8,

所以沿y轴向上平移了8个单位,

故选A【点睛】本题考查一次函数图象与几何变换,解题的关键是掌握平移的规律.4、C【解析】

根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=1.故选:C.【点睛】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.5、B【解析】

根据三角形的中位线等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半,然后根据指数的变化规律求解即可.【详解】解:根据三角形中位线定理可得第2个三角形的各边长都等于第1个三角形各边的一半,∵第1个三角形的周长是1,∴第2个三角形的周长=第1个三角形的周长1×=,第3个三角形的周长为=第2个三角形的周长×=()²,第4个三角形的周长为=第3个三角形的周长()²×=()³,…∴第2019个三角形的周长═()2018=.故选B.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并判断出后一个三角形的周长等于上一个三角形的周长的一半是解题的关键.6、D【解析】试题分析:方程利用两数相乘积为0,两因式中至少有一个为0,因此可由方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故选D.考点:解一元二次方程-因式分解法7、B【解析】

众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.8、D【解析】

利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(-4,6)在此正比例函数图象上,此题得解.【详解】解:设正比例函数解析式为y=kx(k≠0).∵正比例函数图象经过点(4,-6),∴-6=4k,∴.∵当x=-4时,y=x=6,∴点(-4,6)在此正比例函数图象上.故选D.【点睛】本题考查了待定系数法求正比例函数解析式以及一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.9、C【解析】

首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S=,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.【详解】解:根据反比例函数得对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于,又∴S四边形ABCD=2.故答案选:C.【点睛】本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.10、A【解析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,∴四边形ECDF是正方形,∴DC=EC=BC-BE,∵四边形ABCD是矩形,∴BC=AD=10,∴DC=10-6=4(cm).故选A.11、A【解析】

原式利用完全平方公式化简,将x与y的值代入计算即可求出值.【详解】当x=+1,y=-1时,x2+2xy+y2=(x+y)2=(+1+-1)2=(2)2=20,故选A.【点睛】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.12、A【解析】

在Rt△AEC中,由于=,可以得到∠1=∠1=30°,又AD=BD=4,得到∠B=∠1=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵=,∴∠1=∠1=30°,∵AD=BD=4,∴∠B=∠1=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=AD=1.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.二、填空题(每题4分,共24分)13、-2【解析】

先提公因数法把多项式x3y+x2y2+xy3因式分解,再根据完全平方公式因式分解即可求解.【详解】解:∵xy=﹣1,x+y=2,∴x3y+x2y2+xy3=代入数据,原式=故答案为:.【点睛】本题考查了因式分解,先提公因式,然后再套完全平方公式即可求解.14、x≠【解析】

根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【详解】解:∵代数式在实数范围内有意义,∴2x-1≠0,解得:x≠.故答案为:x≠.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15、【解析】

此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.【详解】∵∴∴∴∴故答案为:.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.16、b>c>a.【解析】

由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.17、【解析】

根据“上加下减”原则进行解答即可.【详解】由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即故答案为:【点睛】本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.18、m≤3【解析】

由二次根式的定义可得被开方数是非负数,即可得答案.【详解】解:由题意得:解得:,故答案为:.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.三、解答题(共78分)19、证明见解析【解析】

根据平行四边形性质得出AD//BC,AD=BC,求出AF=EC,AF//EC,得出四边形DEBF是平行四边形,根据平行四边形的性质推出即可【详解】证明:∵四边形是平行四边形,∴且,又∵,∴,,∴四边形是平行四边形.【点睛】此题主要考查平行四边形的判定与性质,解题关键在于掌握平行四边形的性质及定理20、(1)AB=,CD=;(2)能否构成直角三角形,理由见解析.【解析】

(1)利用勾股定理求出AB、CD的长即可;

(2)根据勾股定理的逆定理,即可作出判断.【详解】(1)(2)如图,∵∴∴以AB、CD、EF三条线可以组成直角三角形.【点睛】考查勾股定理,勾股定理的逆定理,比较基础,熟练掌握勾股定理以及勾股定理的逆定理是解题的关键.21、(1)50;(2)见解析;(3)108°;)(4)160.【解析】

(1)根据乘车的人数是25,所占的百分比是50%,即可求得总人数;(2)利用总人数乘以步行对应的百分比即可求得步行的人数,从而补全统计图;(3)根据三部分百分比的和是1求得“骑车”对应的百分比,再乘以360°可得答案;(4)利用总人数800乘以步行对应的百分比即可.【详解】解:(1)该班总人数是:25÷50%=50(人),故答案为:50;(2)步行的人数是:50×20%=10(人).;(3)“骑车”部分所对应的百分比是:1﹣50%﹣20%=30%,所以扇形图中表示骑车部分所占扇形的圆心角为360°×30%=108°,故答案为:108°;(4)估计该年级步行上学的学生人数是:800×20%=160(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及样本估计总计.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1);(2).【解析】

(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;(2)拟使用列表法求解,见解析.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读,他选中《九章算术》的概率为;(2)将四部名著《周牌算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《周牌算经》为事件M,用列表法列举出从4部名著中选择2部所能产生的全部结果:第1部第2部ABCDABACADABABCBDBCACBCDCDADBDCD由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即AB,BA,∴P(M)=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)(a−3)(a−1);(2)当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【解析】

(1)根据题目中的例子,可以对题目中的式子配方后分解因式;(2)根据题目中的式子,利用配方法可以求得a、b的值,根据三角形三边关系确定c的值,由三角形周长可得结论;(3)根据配方法即可求出答案.【详解】解:(1)a2−8a+11=(a2−8a+16)−1=(a−4)2−12=(a−3)(a−1),故答案为:(a−3)(a−1);(2)∵a2+b2−14a−8b+61=0,∴(a2−14a+49)+(b2−8b+16)=0,∴(a−7)2+(b−4)2=0,∴a−7=0,b−4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=1,7,9,当a=7,b=4,c=1时,△ABC的周长最小,最小值是:7+4+1=16;(3)−2x2−4x+3,=−2(x2+2x+1−1)+3,=−2(x+1)2+1,∴当x=−1时,多项式−2x2−4x+3有最大值,最大值是1.【点睛】本题考查配方法,三角形三边关系,解题的关键是正确理解题意给出的方法,解决问题,本题属于基础题型.24、(1);(2)的值为.【解析】

(1)设直线AB所对应的函数表达式为.把点和点.代入,用待定系数法求解即可;(2)把代入(1)中求得的解析式即可求出m的值.【详解】(1)直线经过点和点,解得直线所对应的函数表达式为.(2)当时,.的值为.【点睛】本题考查了待定系数法求函数解析式及一次函数图像上点的坐标特征,熟练掌握待定系数法是解答本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论