版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川阆中学2024年八年级数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上2.如图,点A(m,5),B(n,2)是抛物线C1:上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是()A. B.C. D.3.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是()A.3.5 B.4.2 C.5.8 D.74.下列图形中既是中心对称图形又是轴对称图形的是A. B. C. D.5.正方形ABCD的边长为2,以AD为边作等边△ADE,则点E到BC的距离是()A.2+ B.2- C.2+,2- D.4-6.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.147.若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是()A.2 B.﹣2 C.±2 D.任意实数8.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是()A.16 B.25 C.144 D.1699.给出下列化简①()2=2:②2;③12;④,其中正确的是()A.①②③④ B.①②③ C.①② D.③④10.已知关于的一元二次方程有两个实数根,.则代数式的值为()A.10 B.2 C. D.11.当分式有意义时,字母x应满足()A.x≠1 B.x=0 C.x≠-1 D.x≠312.如图所示,正比例函数和一次函数交于,则不等式的解集为()A. B. C. D.二、填空题(每题4分,共24分)13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表,如下表.已知该校学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时)0~11~2(不含1)2~3(不含2)超过3人
数710141914.抛物线,当随的增大而减小时的取值范围为______.15.2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为_____.16.计算:__________.17.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.18.已知54-1能被20~30之间的两个整数整除,则这两个整数是_________.三、解答题(共78分)19.(8分)(1)解不等式组:(2)解分式方程:.20.(8分)解不等式组:,并把不等式组的解集在数轴上标出来21.(8分)如图,矩形的面积为20cm2,对角线交于点,以AB、AO为邻边作平行四边形,对角线交于点;以为邻边作平行四边形;…;依此类推,则平行四边形的面积为______,平行四边形的面积为______.22.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=AB.
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.23.(10分)树叶有关的问题如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:表1A树、B树、C树树叶的长宽比统计表12345678910A树树叶的长宽比4.04.95.24.15.78.57.96.37.77.9B树树叶的长宽比2.52.42.22.32.01.92.32.01.92.0C树树叶的长宽比1.11.21.20.91.01.01.10.91.01.3表1A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表平均数中位数众数方差A树树叶的长宽比6.26.07.92.5B树树叶的长宽比2.20.38C树树叶的长宽比1.11.11.00.02A树、B树、C树树叶的长随变化的情况解决下列问题:(1)将表2补充完整;(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。24.(10分)如图,直线l1交x轴于A(3,0),交y轴于B(0,﹣2)(1)求直线l1的表达式;(2)将l1向上平移到C(0,3),得到直线l2,写出l2的表达式;(3)过点A作直线l3⊥x轴,交l2于点D,求四边形ABCD的面积.25.(12分)为了解某校八年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有人,抽测成绩的众数是;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校400名八年级男生中估计有多少人体能达标?26.如图,在等腰直角三角形ABC中,∠ACB=90°,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm.(1)求证△CBE≌△ACD(2)求线段BE的长
参考答案一、选择题(每题4分,共48分)1、C【解析】
必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.2、C【解析】
图中阴影部分的面积等于BB'的长度乘以BB'上的高,根据点A、B的坐标求得高为3,结合面积可求得BB'为3,即平移距离是3,然后根据平移规律解答.【详解】解:,∵曲线段AB扫过的面积为9,点A(m,5),B(n,2)∴3BB′=9,∴BB′=3,即将函数的图象沿x轴向左平移3个单位长度得到抛物线C2,∴抛物线C2的函数表达式是:,故选:C.【点睛】此题主要考查了二次函数图象与几何变换等知识,根据已知得出线段BB′的长度是解题关键.3、D【解析】
解:根据垂线段最短,可知AP的长不可小于3∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,∴AP的长不能大于1.∴故选D.4、B【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选B.5、C【解析】
由等边三角形的性质可得点E到AD上的距离为,分两种情况可求点E到BC的距离.【详解】解:∵等边△ADE的边长为2∴点E到AD上的距离EG为,当△ADE在正方形外面,∴点E到BC的距离=2+当△ADE在正方形里面∴点E到BC的距离=2-故选:C.【点睛】本题考查了正方形的性质,等边三角形的性质,熟练运用正方形的性质是本题的关键.6、C【解析】
解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选C.7、B【解析】
正比例函数的一般式y=kx,k≠0,所以使m2-4=0,m-2≠0即可得解.【详解】由正比例函数的定义可得:m2-4=0,且m-2≠0,解得,m=-2;故选B.8、B【解析】
两个阴影正方形的面积和等于直角三角形另一未知边的平方,利用勾股定理即可求出.【详解】两个阴影正方形的面积和为132-122=25,所以B选项是正确的.【点睛】本题主要考查了正方形的面积以及勾股定理的应用,推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.9、C【解析】
根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式,故③错误;④原式,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.10、B【解析】
先由根与系数的关系得到关于的方程组,代入直接求值即可.【详解】解:因为有两个实数根,,所以所以,解得:,所以,故选B.【点睛】本题考查的是一元二次方程的根与系数的关系,方程组的解法及代数式的求值,掌握相关的知识点是解题关键.11、A【解析】
分式有意义,分母不为零.【详解】解:当,即时,分式有意义;故选:A.【点睛】本题考查了分式有意义的条件.(1)若分式无意义,则分母为零;(2)若分式有意义,则分母不为零.12、B【解析】
利用函数的图象,写出在直线上方所对应的自变量的范围即可.【详解】当时,,所以不等式的解集为故选B.【点睛】本题考查了一次函数与一元一次不等式,从函数图象的角度看,就是确定直线在x轴上(或下)方部分所有的点的横坐标.二、填空题(每题4分,共24分)13、1【解析】试题分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.解:根据题意得:1200×=1(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有1人;故答案为1.考点:用样本估计总体.14、(也可以)【解析】
先确定抛物线的开口方向和对称轴,即可确定答案.【详解】解:∵的对称轴为x=1且开口向上∴随的增大而减小时的取值范围为(也可以)【点睛】本题主要考查了二次函数增减性中的自变量的取值范围,其中确定抛物线的开口方向和对称轴是解答本题的关键.15、1【解析】
根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.【详解】∵大正方形的面积是13,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=1.故答案为1.【点睛】本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.16、【解析】
先把每个二次根式化简,然后合并同类二次根式即可。【详解】解:原式=2-=【点睛】本题考查了二次根式的化简和运算,熟练掌握计算法则是关键。17、1【解析】
延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=1.故答案为1.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.18、24,26【解析】
将54-1利用分解因式的知识进行分解,再结合题目54-1能被20至30之间的两个整数整除即可得出答案.【详解】54−1=(5+1)(5−1)∵54−1能被20至30之间的两个整数整除,∴可得:5+1=26,5−1=24.故答案为:24,26【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则三、解答题(共78分)19、(1)-2≤x<1;(2)x=-1.【解析】
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1),
由①得:x<1,
由②得:x≥-2,
则不等式组的解集为-2≤x<1;
(2)去分母得:x2+x=x2-1-2,
解得:x=-1,
经检验x=-1是分式方程的解.故答案为:(1)-2≤x<1;(2)x=-1.【点睛】本题考查解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解题的关键,解分式方程注意要检验.20、﹣2≤x<1,见解析.【解析】
先分别求出不等式的解集,再在数轴上表示出来即可【详解】解:,解不等式①,得x<1,解不等式②,得x≥﹣2,所以原不等式组的加减为﹣2≤x<1.把不等式的解集在数轴上表示为:【点睛】此题考查解不等式组和在数轴上表示不等式的解集,掌握运算法则是解题关键21、【解析】
根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,求出平行四边形的面积,然后再观察发现规律进行解答.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴S△ADC=S△ABC=S矩形ABCD=×20=10,∴S△AOB=S△BCO=S△ABC=×10=5,∴S△ABO1=S△AOB=×5=,∴S△ABO2=S△ABO1=,S△ABO3=S△ABO2=,S△ABO4=S△ABO3=,∴S平行四边形AO4C5B=2S△ABO4=2×=,∴平行四边形的面积为:,故答案为:,.【点睛】本题考查了三角形的面积,矩形的性质,平行四边形的性质的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.22、(1)A点坐标为(3,3),B点坐标为(6,0);
(2)m=t(0<t<3).【解析】
(1)由题意得到B点坐标为(6,0),根据等腰直角三角形的性质即可解决问题;
(2)首先求出直线OA、OB、OC、BC的解析式.进而求出P、Q的坐标即可解决问题.【详解】(1)∵OB=6,
∴B点坐标为(6,0),过点A作x轴的垂线AM,∵∠OAB=90°且OA=AB,
∴△AOB为等腰直角三角形,
∴OM=BM=AM=OB=3,
∴A点坐标为(3,3);
(2)作CN⊥x轴于N,如图,
∵t=4时,直线l恰好过点C,
∴ON=4,
在Rt△OCN中,CN==3,
∴C点坐标为(4,−3),
设直线OC的解析式为y=kx(k≠0),
把C(4,−3)代入得4k=−3,解得k=,
∴直线OC的解析式为y=x,
设直线OA的解析式为y=ax(a≠0),
把A(3,3)代入得3a=3,解得a=1,
∴直线OA的解析式为y=x
∵P(t,0)(0<t<3),
∴Q(t,t),R(t,t),
∴QR=t−(t)=t,
即m=t(0<t<3).【点睛】本题考查四边形综合问题,解题的关键是掌握等腰直角三角形的性质、待定系数法求解析式.23、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;【解析】
(1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;(2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;(3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.【详解】解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,2.0,2.2,2.3,2.3,2.4,2.5,处在中间位置的两个数为2.0,2.2,∴中位数为(2.0+2.2)÷2=2.1;∵2.0出现了3次,出现的次数最多,∴众数为2.0.平均数中位数众数方差A树树叶的长宽比B树树叶的长宽比2.12.0C树树叶的长宽比(2)小张同学的说法是合理的,小李同学的说法是不合理的.理由如下:由表中的数据可知C树叶的长宽比近似于1,故小张的说法正确;由树叶的长度和宽度可知该树叶的长宽比近似于6,所以该树叶是A树的树叶,故小李的说法错误;(3)图1中,★表示这片树叶的数据,这片树叶来自B树;这块树叶的长宽比为103:52≈2,所以这片树叶来自B树.【点睛】本题主要考查了统计表的应用,平均数,中位数,众数,方差,用样本估计总体,熟练掌握中位数和众数的定义是解决此题的关键.24、(1)直线l1的表达式为:y=x﹣2;(2)直线l2的表达式为:y=x+3;(3)四边形ABCD的面积=1.【解析】
(1)利用待定系数法求直线l1的表达式(2)根据一次函数沿着y轴向上平移的规律求解(3)根据题意可知四边形为平行四边形,又各点的坐标,可直接求解【详解】(1)设直线l1的表达式为:y=kx+b,由题意可得:,解得:,所以,直线l1的表达式为:y=x﹣2;(2)将l1向上平移到C(0,3)可知,向上平移了5个单位长度,由几何变换可得:直线l2的表达式为:y=x﹣2+5=x+3;(3)根据题意可知AB∥C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厦门2024年项目分包合同样本3篇
- 高三上学期语文教学工作总结
- 评审材料真实性保证
- 语文学习利器西红柿与培智的完美融合
- 购货合同与购销合同的合同仲裁
- 购销合同书写技巧与细节讲解指南案例
- 购销合同更动通知
- 贴心维护技术服务合同
- 足浴店加盟合同协议
- 跟着地图去旅行
- 土地抵押净值评估报告
- “双减”背景下小学语文学习习惯的培养策略与实践
- 二级公立医院绩效考核三级手术目录(2020版)
- 研发部组织架构图
- 设备采购 投标方案(技术方案)
- 药品有效期管理和药物过期预防的重要性
- 机关库存物资管理制度
- 三年级上册《劳动》期末试卷
- 品牌授权工厂生产授权书合同
- 小学各年级培养团结合作意识共同成长主题班会
- 【课件】《乡土中国》之《差序格局》课件统编版高中语文必修上册
评论
0/150
提交评论