新疆昌吉州共同体2024年数学八年级下册期末调研试题含解析_第1页
新疆昌吉州共同体2024年数学八年级下册期末调研试题含解析_第2页
新疆昌吉州共同体2024年数学八年级下册期末调研试题含解析_第3页
新疆昌吉州共同体2024年数学八年级下册期末调研试题含解析_第4页
新疆昌吉州共同体2024年数学八年级下册期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆昌吉州共同体2024年数学八年级下册期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各点中,在双曲线y=-上的点是().A.(,-9) B.(3,1) C.(-1,-3) D.(6,)2.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=65°,则∠ACD的度数为()A.65° B.60° C.55° D.45°3.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数 B.方差 C.众数 D.中位数4.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形 B.矩形 C.菱形 D.正方形5.如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b的表达式为()A. B. C. D.6.在式子,,,,,中,分式的个数有()A.2 B.3 C.4 D.57.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.39.39.39.3方差0.0250.0150.0350.023则这四人中成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁8.在平面直角坐标系中,点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限9.用配方法解方程x2﹣6x+3=0,下列变形正确的是()A.(x﹣3)2=6 B.(x﹣3)2=3 C.(x﹣3)2=0 D.(x﹣3)2=110.如图,不能判定△AOB和△DOC相似的条件是(

)A.AO•CO=BO•DO B. C.∠A=∠D D.∠B=∠C11.如图,在中,对角线,交于点.若,,,则的周长为()A. B. C. D.12.多项式与多项式的公因式是()A. B. C. D.二、填空题(每题4分,共24分)13.计算:=___________14.如图,,,,若,则的长为______.15.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是_____.16.已知,那么的值为____________.17.若关于x的分式方程=2a无解,则a的值为_____.18.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=AB.

(1)求点A和点B的坐标;

(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.20.(8分)因式分解是数学解题的一种重要工具,掌握不同因式分解的方法对数学解题有着重要的意义.我们常见的因式分解方法有:提公因式法、公式法、分组分解法、十字相乘法等.在此,介绍一种方法叫“试根法”.例:,当时,整式的值为0,所以,多项式有因式,设,展开后可得,所以,根据上述引例,请你分解因式:(1);(2).21.(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:

A型

B型

价格(万元/台)

a

b

处理污水量(吨/月)

220

180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.22.(10分)益民商店经销某种商品,进价为每件80元,商店销售该商品每件售价高干8元且不超过120元若售价定为每件120元时,每天可销售200件,市场调查反映:该商品售价在120元的基础上,每降价1元,每天可多销售10件,设该商品的售价为元,每天销售该商品的数量为件.(1)求与之间的函数关系式;(2)商店在销售该商品时,除成本外每天还需支付其余各种费用1000元,益民商店在某一天销售该商品时共获利8000元,求这一天该商品的售价为多少元?23.(10分)如图,在△ABC中,AB=AC,点,在边上,.求证:.24.(10分)张老师在微机上设计了一长方形图片,已知长方形的长是cm,宽是cm,他又设计一个面积与其相等的圆,请你帮助张老师求出圆的半径r.25.(12分)化简:.26.已知一次函数.(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?

参考答案一、选择题(每题4分,共48分)1、A【解析】

将各点代入曲线的解析式进行计算即可.【详解】A.(,-9),在双曲线解析式上;B.(3,1),不在双曲线解析式上;C.(-1,-3),不在双曲线解析式上;D.(6,),不在双曲线解析式上;故答案为:A.【点睛】本题考查了双曲线的点的问题,掌握代入法是解题的关键.2、C【解析】

由作法可知,MN为垂直平分线,DC=CD,由等腰三角形性质可知∠BCD=∠B=30°,再由三角形内角和即可求出∠ACD度数.【详解】解:由作法可知,MN为垂直平分线,

∴BD=CD,

∴∠BCD=∠B=30°,

∵∠A=65°,

∴∠ACB=180°-∠A-∠B=85°,

∴∠ACD=∠ACB-∠BCD=85°-30°=55°.

故选:C.【点睛】此题主要考查了基本作图以及线段垂直平分线的性质,得出∠DCB=∠DBC=30°是解题关键.3、B【解析】

平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.4、A【解析】

试题分析:连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,理由如下:(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.考点:中点四边形.5、B【解析】

根据等腰直角三角形的性质和三角函数分别求B、C两点的坐标,利用待定系数法求直线的表达式.【详解】∵A点坐标为(1,0),∴OA=1,∵∠BCA=60°,∠α=101°,∴∠BAC=101°﹣60°=41°,∴△AOB是等腰直角三角形,∴AO=BO=1,∴B(0,1).∵∠CBO=90°﹣∠BCA=30°,∴BC=2CO,BO==CO=1,∴CO=,∴C(﹣,0),把B(0,1)和C(﹣,0)代入y=kx+b中得:,解得:,∴直线BC的表达式为:y=x+1.故选B.【点睛】本题考查了利用待定系数法求直线的解析式、含30度角的直角三角形、等腰直角三角形的性质及图形与坐标特点,熟练掌握图形与坐标特点是本题的关键.6、B【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:分式有:,,共3个.

故选B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.7、B【解析】

根据方差的定义,方差越小数据越稳定,对题目进行分析即可得到答案.【详解】因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、C【解析】

根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.【详解】解:在平面直角坐标系中,点位于第三象限,故选:.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9、A【解析】

把常数项3移到等号的右边,再在等式的两边同时加上一次项系数﹣6的一半的平方,配成完全平方的形式,从而得出答案.【详解】解:∵x2﹣6x+3=0,∴x2﹣6x=﹣3,∴x2﹣6x+9=6,即(x﹣3)2=6,故选:A.【点睛】本题考查了一元二次方程的解法---配方法,熟练掌握配方的步骤是解题的关键10、B【解析】选项A、能判定.利用两边成比例夹角相等.选项B、不能判定.选项C、能判定.利用两角对应相等的两个三角形相似.选项D、能判定.利用两角对应相等的两个三角形相似.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A型”与“X型”图)(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形,有“反A共角型”、“反A共角共边型”、“蝶型”,如下图:11、B【解析】

根据平行四边形的性质进行计算即可.【详解】解:在中,BO=BD=,CO=AC=2,∴的周长为:B0+CO+BC=+2+3=7.5故答案选:B【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.12、A【解析】试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).故选A考点:因式分解二、填空题(每题4分,共24分)13、6【解析】

先取绝对值符号、计算负整数指数幂和零指数幂,再计算加减可得;【详解】解:原式=1+1+4=6故答案为:6【点睛】此题主要考查了实数运算,绝对值,负整数指数幂和零指数幂,正确化简各数是解题关键.14、1【解析】

作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【点睛】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.15、30°或150°.【解析】

分等边△ADE在正方形的内部和外部两种情况分别求解即可得.【详解】如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°;如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=×(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°,故答案为30°或150°.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质、运用分类讨论思想画出符合题意的图形并准确识图是解题的关键.16、1【解析】

根据非负数的性质先求出与的值,再根据有理数的乘方运算进一步计算即可.【详解】∵,∴,,∴,,∴,故答案为:1.【点睛】本题主要考查了非负数的性质以及有理数的乘方运算,熟练掌握相关概念是解题关键.17、1或【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为1或.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.18、1.【解析】试题分析:利用平均数的定义,列出方程即可求解.解:由题意知,3,a,4,6,7的平均数是1,则=1,∴a=21﹣3﹣4﹣6﹣7=1.故答案为1.点评:本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.三、解答题(共78分)19、(1)A点坐标为(3,3),B点坐标为(6,0);

(2)m=t(0<t<3).【解析】

(1)由题意得到B点坐标为(6,0),根据等腰直角三角形的性质即可解决问题;

(2)首先求出直线OA、OB、OC、BC的解析式.进而求出P、Q的坐标即可解决问题.【详解】(1)∵OB=6,

∴B点坐标为(6,0),过点A作x轴的垂线AM,∵∠OAB=90°且OA=AB,

∴△AOB为等腰直角三角形,

∴OM=BM=AM=OB=3,

∴A点坐标为(3,3);

(2)作CN⊥x轴于N,如图,

∵t=4时,直线l恰好过点C,

∴ON=4,

在Rt△OCN中,CN==3,

∴C点坐标为(4,−3),

设直线OC的解析式为y=kx(k≠0),

把C(4,−3)代入得4k=−3,解得k=,

∴直线OC的解析式为y=x,

设直线OA的解析式为y=ax(a≠0),

把A(3,3)代入得3a=3,解得a=1,

∴直线OA的解析式为y=x

∵P(t,0)(0<t<3),

∴Q(t,t),R(t,t),

∴QR=t−(t)=t,

即m=t(0<t<3).【点睛】本题考查四边形综合问题,解题的关键是掌握等腰直角三角形的性质、待定系数法求解析式.20、(1);(2)【解析】

(1)先找出x=1时,整式的值为0,进而找出一个因式,再将多项式分解因式,即可得出结论;(2)先找出x=-1时,整式的值为0,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】(1)当x=1时,整式的值为0,所以,多项式有因式(x-1),于是2x2-1x+1=(x-1)(2x-1);(2)当x=-1时,整式的值为0,∴多项式x1+1x2+1x+1中有因式(x+1),于是可设x1+1x2+1x+1=(x+1)(x2+mx+1)=x1+(m+1)x2+(1+m)x+1,∴m+1=1,,∴m=2,∴x1+1x2+1x+1=(x+1)(x2+2x+1)=(x+1)1.【点睛】此题考查了用“试根法”分解因式,考查了学生的阅读理解能力以及知识的迁移能力.21、(1);(2)有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台;④A型设备1台,B型设备7台;(1)为了节约资金,应选购A型设备2台,B型设备8台.【解析】

(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式.(1)利用每月要求处理污水量不低于1880吨,可列不等式求解.【详解】解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,根据题意得,12x+9(10-x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,1∴10-x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备1台,B型设备7台;(1)由题意:220x+180(10-x)≥1880,∴x≥2,又∵x≤,∴x为2,1.当x=2时,购买资金为12×2+9×8=96(万元),当x=1时,购买资金为12×1+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.【点睛】本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多1万元,购买2台A型设备比购买1台B型号设备少1万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.22、(1)y=−10x+1400;(2)这一天的销售单价为110元.【解析】

(1)首先利用当售价定为每件120元时每天可售出200件,该商品销售单价在120元的基础上,每降1元,每天可多售出10件,进而求出每天可表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论