版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年甘肃省临洮县联考八年级下册数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,菱形中,点、分别是、的中点,若,,则的长为()A. B. C. D.2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<93.一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<04.袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有()A.3个 B.不足3个C.4个 D.5个或5个以上5.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AB,BC,CD,AD的中点.若AC=10,BD=6,则四边形EFGH的面积为()A.15 B.20 C.30 D.606.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时7.最早记载勾股定理的我国古代数学名著是()A.《九章算术》 B.《周髀算经》 C.《孙子算经》 D.《海岛算经》8.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50,则这组数据的众数是()A.36 B.45 C.48 D.509.在平面直角坐标系中,点)平移后能与原来的位置关于轴对称,则应把点()A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位10.计算()3÷的结果是()A. B.y2 C.y4 D.x2y2二、填空题(每小题3分,共24分)11.已知,,,,五个数据的方差是.那么,,,,五个数据的方差是______.12.化简:的结果是________.13.四边形ABCD中,,,,,则______.14.直线与轴的交点坐标___________15.已知在同一坐标系中,某正比例函数与某反比例函数的图像交于A,B两点,若点A的坐标为(-1,4),则点B的坐标为___.16.当__________时,分式有意义.17.某校九年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是_______(填序号).18.方程的根是_____.三、解答题(共66分)19.(10分)如图所示.在Rt△ABC中,AB=CB,ED⊥CB,垂足为D点,且∠CED=60°,∠EAB=30°,AE=2,求CB的长.20.(6分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)21.(6分)为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):(1)写出a,b的值;(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.22.(8分)在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;(1)当点在边上时,①判断与的数量关系;②当时,判断点的位置;(2)若正方形的边长为2,请直接写出点在边上时,的取值范围.23.(8分)如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆.(1)请你设计一种围法(篱笆必须用完),使矩形花园的面积为米.(2)如何设计可以使得围成的矩形面积最大?最大面积是多少?24.(8分)某校八年级学生进行了一次视力调查,绘制出频数分布表和频数直方图的一部分如下:请根据图表信息完成下列各题:(1)在频数分布表中,的值为,的值是;(2)将频数直方图补充完整;(3)小芳同学说“我的视力是此次调查所得数据的中位数”,你觉得小芳同学的视力应在哪个范围内?(1)若视力在不小于1.9的均属正常,请你求出视力正常的人数占被调查人数的百分比.25.(10分)解不等式组,并将其解集在数轴上表示出来.(1);(2)26.(10分)某书店准备购进甲、乙两种图书共100本,购书款不高于1118元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:甲种图书乙种图书进价(元/本)814售价(元/本)1826请回答下列问题:(1)书店有多少种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的一次函数知识来解决)
参考答案一、选择题(每小题3分,共30分)1、A【解析】
由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO,由勾股定理可求BO=4,可得BD=8,由三角形中位线定理可求EF的长【详解】解:如图,连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=3,BO=DO,∴,∴BD=2BO=8,∵点E、F分别是AB、AD的中点,∴EF=BD=4,故选:A.【点睛】本题考查了菱形的性质,三角形中位线定理,本题中根据勾股定理求OB的值是解题的关键.2、D【解析】【分析】易得两条对角线的一半和BC组成三角形,那么BC应大于已知两条对角线的一半之差,小于两条对角线的一半之和.【详解】平行四边形的对角线互相平分得:两条对角线的一半分别是5,4,再根据三角形的三边关系,得:1<BC<9,故选D.【点睛】本题考查了平行四边形的性质、三角形三边关系,熟练掌握平行四边形的对角线互相平分是解本题的关键.3、B【解析】
根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】由一次函数y=kx+b的图象经过第一、三、四象限又由k>1时,直线必经过一、三象限,故知k>1再由图象过三、四象限,即直线与y轴负半轴相交,所以b<1.故选:B.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.4、D【解析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.5、A【解析】
根据三角形中位线定理、矩形的判定定理得到平行四边形EFGH为矩形,根据矩形的面积公式计算即可.【详解】解:∵点E,F分别为边AB,BC的中点.∴EF=AC=5,EF∥AC,同理,HG=AC=5,HG∥AC,EH=BD=3,EH∥BD,∴EF=HG,EF∥HG,∴四边形EFGH为平行四边形,∵EF∥AC,AC⊥BD,∴EF⊥BD,∵EH∥BD,∴∠HEF=90°,∴平行四边形EFGH为矩形,∴四边形EFGH的面积=3×5=1.故选:A.【点睛】本题考查中点四边形的概念和性质、掌握三角形中位线定理、矩形的判定定理是解题的关键.6、B【解析】试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.由条形统计图可得,人数最多的一组是4~6小时,频数为22,考点:频数(率)分布直方图7、B【解析】
由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.【详解】最早记载勾股定理的我国古代数学名著是《周髀算经》,故选:B.【点睛】考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.8、D【解析】
根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.【详解】解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,故选D.【点睛】考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.9、C【解析】
先求出点A关于y轴的对称点,即可知道平移的规律.【详解】∵点关于y轴的对称点为(2,3)∴应把点向右平移个单位,故选C.【点睛】此题主要考查直角坐标系的坐标变换,解题的关键是熟知找到点A关于y轴的对称点.10、B【解析】
根据分式的运算法则即可求出答案.【详解】解:原式===,故选:B.【点睛】此题考查分式的运算及幂的运算,难度一般.二、填空题(每小题3分,共24分)11、1【解析】
方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变.【详解】由题意知,设原数据的平均数为,新数据的每一个数都加了1,则平均数变为+1,
则原来的方差S11=[(x1-)1+(x1-)1+…+(x5-)1]=1,
现在的方差S11=[(x1+1--1)1+(x1+1--1)1+…+(x5+1--1)1]
=[(x1-)1+(x1-)1+…+(x5-)1]=1,
所以方差不变.
故答案为1.【点睛】本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.12、-2【解析】
化简二次根式并去括号即可.【详解】解:故答案为:-2【点睛】本题考查了二次根式的混合运算,计算较为简单,熟练掌握二次根式的化简是解题的关键.13、2【解析】
画出图形,作CE⊥AD,根据矩形性质和勾股定理求出DE,再求BC.【详解】已知,如图所示,作CE⊥AD,则=,因为,,所以,==,所以,四边形ABCE是矩形,所以,AE=BC,CE=AB=3,在Rt△CDE中,DE=,所以,BC=AE=AE-DE=6-4=2.故答案为2【点睛】本题考核知识点:矩形的判定,勾股定理.解题关键点:构造直角三角形.14、(0,-3)【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.【详解】解:由题意得:当x=0时,y=2×0-3=-3,即直线与y轴交点坐标为(0,-3),故答案为(0,-3).【点睛】本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.15、(1,−4)【解析】
根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.【详解】∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,
∵一个交点的坐标为(−1,4),
∴它的另一个交点的坐标是(1,−4),
故答案为:(1,−4).【点睛】本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.16、≠【解析】若分式有意义,则≠0,∴a≠17、①②③.【解析】
根据平均数、方差和中位数的意义,可知:甲乙的平均数相同,所以①甲、乙两班学生的平均水平相同.根据中位数可知乙的中位数大,所以②乙班优秀的人数比甲班优秀的人数多.根据方差数据可知,方差越大波动越大,反之越小,所以甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.
故答案为①②③.【点睛】本题考查统计知识中的中位数、平均数和方差的意义.要知道平均数和中位数反映的是数据的集中趋势,方差反映的是离散程度.18、,.【解析】方程变形得:x1+1x=0,即x(x+1)=0,可得x=0或x+1=0,解得:x1=0,x1=﹣1.故答案是:x1=0,x1=﹣1.三、解答题(共66分)19、.【解析】
直接利用直角三角形的性质结合勾股定理得出DC的长,进而得出BC的长.【详解】过E点作EF⊥AB,垂足为F.∵∠EAB=30°,AE=2,∴EF=BD=1.又∵∠CED=60°,∴∠ECD=30°.∵AB=CB,∴∠CAB=∠ACB=45°,∴∠EAC=∠ECA=15°,∴AE=CE=2.在Rt△CDE中,∵∠ECD=30°,∴ED=1,CD,∴CB=CD+BD=1.【点睛】本题考查了勾股定理以及直角三角形的性质,正确作出辅助线是解题的关键.20、(1);(2);(3)摸到的两球颜色相同的概率【解析】
(1)直接利用概率公式计算;(2)利用完全列举法展示6种等可能的结果数,然后根据概率公式求解;(3)画树状图展示所有12种等可能的结果数,找出摸到两球颜色相同的结果数,然后根据概率公式求解.【详解】(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是.(2)如果在乙袋中随机摸出两个小球,则有红白、红白、红白、白白、白白、白白共6种等可能的结果数,其中摸到两球颜色相同的概率=.(3)画树状图为:共有12种等可能的结果数,其中摸到两球颜色相同的结果数为5,所以摸到两球颜色相同的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21、(1)a=84.5,b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【解析】
(1)依据中位数和众数的定义进行计算即可;(2)依据平均数、中位数、方差以及众数的角度分析,即可得到哪个学生的水平较高.【详解】(1)甲组数据排序后,最中间的两个数据为:84和85,故中位数a(84+85)=84.5,乙组数据中出现次数最多的数据为81,故众数b=81;(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论).【点睛】本题考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.22、(1)①,理由详见解析;②点位于正方形两条对角线的交点处(或中点出),理由详见解析;(2)【解析】
(1)①过点作于点,于点,通过证可得ME=MF;②点位于正方形两条对角线的交点处时,,可得;(2)当点F分别在BC的中点处和端点处时,可得M的位置,进而得出AM的取值范围。【详解】解:(1)。理由是:过点作于点,于点在正方形中,矩形为正方形又②点位于正方形两条对角线的交点处(或中点处)如图,是的中位线,又,此时,是中点,且,,(2)当点F在BC中点时,M在AC,BD交点处时,此时AM最小,AM=AC=;当点F与点C重合时,M在AC,BD交点到点C的中点处,此时AM最大,AM=。故答案为:【点睛】本题是运动型几何综合题,考查了全等三角形、正方形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)添加恰当的辅助线是解题的关键。23、见详解.【解析】
(1)设AB为xm,则BC为(40-2x)m,根据题意可得等量关系:矩形的面积=长×宽=150,根据等量关系列出方程,再解即可;
(2)根据题意和图形可以得到S与x之间的函数关系,将函数关系式化为顶点式,即可解答本题.【详解】解:(1)设AB为xm,则BC为(40-2x)m,根据题意可得:X(40-2x)=150解得:x1=,x2=15.:当x=时,40-2x=30>25.故不满足题意,应舍去.②当x=15时,40-2x=10<25,故当x=15时,满足实际要求.∴当x=15时,使矩形花园的面积为米.(2)设矩形的面积为S,则依意得:S=X(40-2x)=-2x2+40x=-2(x-5)2+50∴当x=5,时S有最大值.最大值为50.【点睛】本题考查了二次函数的实际应用,正理解题意找到等量关系列出方程是解题的关键.24、(1)60,0.2;(2)见解析;(3)在之间;(1)【解析】
(1)用频数除以对应的频率可得调查的总人数,再用总人数乘以0.3即可得a的值,用10除以总人数即可得b的值;(2)根据a的值补图即可;(3)根据总人数和中位数的定义可知中位数所在的小组,即为小芳的视力范围;(1)根据表格数据求出视力大于等于1.9的学生人数,再除以总人数即可得百分比.【详解】(1)调查总人数为(人)则,故答案为:60,0.2.(2)如图所示,(3)调查总人数为200人,由表可知中位数在之间,∴小芳同学的视力在之间(1)视力大于等于1.9的学生人数为60+10=70人,∴视力正常的人数占被调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度仓库租赁合同样本
- 二零二四年度物业服务合同:商业综合体物业管理服务协议
- 二零二四年度融资租赁合同:甲乙双方就融资租赁事宜达成的一致协议
- 2024年度版权登记保护合同
- 二零二四年度技术开发合同的技术指标要求3篇
- 2024年度员工福利与代加工生产协议
- 2024年度牛奶品牌推广与合作合同
- 2024年度标准土地买卖合同格式
- 2024年度企业环保合规服务合同
- 二零二四年度小区物业服务及门窗供应商合同
- 2024国家工作人员学法用法考试题库与答案
- 《铁路工程预算定额》定额册及章节说明(含补充预算定额)
- 医生进修汇报
- 医疗救护柴油供应协议
- 道德与法治七年级情绪的管理课件
- 《客舱安全与应急处置》-课件:应急撤离的基础知识
- 2023-2024学年北京版三年级上册期中模拟检测数学试卷(含答案解析)
- 养老家庭照护床位服务意向书、综合评估表、适老化改造和老年用品配置清单、养老家庭照护床位服务协议(范本)
- 围手术期液体管理
- 《冬季常见病预防》课件
- 新生儿胃出血个案护理
评论
0/150
提交评论