版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年安徽省颍上六十铺中学八年级下册数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.菱形ABCD中,已知:AC=6,BD=8,则此菱形的边长等于()A.6 B.8 C.10 D.52.如图,在正方形中,分别以点,为圆心,长为半径画弧,两弧相交于点,连接,得到,则与正方形的面积比为()A.1:2 B.1:3 C.1:4 D.3.下面四个美术字中可以看作轴对称图形的是()A. B. C. D.4.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的是()A.①②③ B.①②④ C.①③④ D.①②③④5.如图,在平面直角坐标系xOy中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,4),反比例函数y的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是()A. B. C.﹣12 D.6.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角7.如图所示的数字图形中是中心对称图形的有()A.1个 B.2个 C.3个 D.4个8.下列命题是真命题的是()A.将点A(﹣2,3)向上平移3个单位后得到的点的坐标为(1,3)B.三角形的三条角平分线的交点到三角形的三个顶点的距离相等C.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等D.平行四边形的对角线相等9.在平而直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则关于点D的说法正确的是()甲:点D在第一象限乙:点D与点A关于原点对称丙:点D的坐标是(-2,1)丁:点D与原点距离是.A.甲乙 B.乙丙 C.甲丁 D.丙丁10.下列条件中,不能判定一个四边形是平行四边形的是()A.两组对边分别平行 B.两组对边分别相等C.两组对角分别相等 D.一组对边平行且另一组对边相等11.小明用作图象的方法解二元一次方程组时,他作出了相应的两个一次函数的图象,则他解的这个方程组是()A. B. C. D.12.如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A中注水,则容器A中水面上升的高度h随时间t变化的大致图象是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。14.若某组数据的方差计算公式是S2=[(7-)+(4-)2+(3-)2+(6-)2],则公式中=______.15.将直线平移,使之经过点,则平移后的直线是__________.16.将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.17.对我国首艘国产航母002型各零部件质量情况的调查,最适合采用的调查方式是_____.18.函数中,自变量x的取值范围是▲.三、解答题(共78分)19.(8分)菱形ABCD中,两条对角线AC、BD相交于点O,点E和点F分别是BC和CD上一动点,且∠EOF+∠BCD=180°,连接EF.(1)如图2,当∠ABC=60°时,猜想三条线段CE、CF、AB之间的数量关系___;(2)如图1,当∠ABC=90°时,若AC=42,BE=32,求线段EF(3)如图3,当∠ABC=90°,将∠EOF的顶点移到AO上任意一点O′处,∠EO′F绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E交BC的延长线一点E,射线O′F交CD的延长线上一点F,连接EF探究在整个运动变化过程中,线段CE、CF,O′C之间满足的数量关系,请直接写出你的结论.20.(8分)今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.21.(8分)解方程:-=-1.22.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于C、D两点,C点的坐标是(4,-1),D点的横坐标为-1.(1)求反比例函数与一次函数的关系式;(1)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值?23.(10分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=4,∠BCD=120°,求四边形AODE的面积.24.(10分)如图,直线与轴交于点,与轴交于点;直线与轴交于点,与直线交于点,且点的纵坐标为4.(1)不等式的解集是;(2)求直线的解析式及的面积;(3)点在坐标平面内,若以、、、为顶点的四边形是平行四边形,求符合条件的所有点的坐标.25.(12分)平面直角坐标系中,设一次函数的图象是直线.(1)如果把向下平移个单位后得到直线,求的值;(2)当直线过点和点时,且,求的取值范围;(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.26.先化简,再求值:其中a=1.
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】解:如图:解:∵四边形ABCD是菱形,∵AC=6,BD=8,
∴OA=3,OB=4,即菱形ABCD的边长是1.
故选:D.【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.2、C【解析】
由作图可得知△BEC是等边三角形,可求出∠ABE=30°,进而可求出△ABE边AB上的高,再根据三角形和正方形的面积公式求出它们的面积比即可.【详解】根据作图知,BE=CE=BC,∴△BEC是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE=∠ABC-∠EBC=90°-60°=30°,设AB=BC=a,过点E作EF⊥AB于点F,如图,则EF=BE=a,∴.故选C.【点睛】此题主要考查了等边三角形的判定以及正方形的性质,熟练掌握有关性质是解题的关键.3、D【解析】
根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【详解】四个汉字中只有“善”字可以看作轴对称图形.故选D.【点睛】本题考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.4、A【解析】
根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.5、B【解析】
先利用勾股定理计算出OC=5,再利用菱形的性质得到AC=OB=OC=5,AC∥OB,则B(-5,0),A(-8,4),接着利用待定系数法确定直线OA的解析式为y=-x,则可确定D(-5,),然后把D点坐标代入y=中可得到k的值.【详解】∵C(−3,4),
∴OC==5,
∵四边形OBAC为菱形,
∴AC=OB=OC=5,AC∥OB,
∴B(−5,0),A(−8,4),
设直线OA的解析式为y=mx,
把A(−8,4)代入得−8m=4,解得m=−,
∴直线OA的解析式为y=-x,
当x=−5时,y=-x=,则D(−5,),
把D(−5,)代入y=,
∴k=−=.
故选B.【点睛】本题考查反比例函数图象上点的坐标特征和菱形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和菱形的性质.6、B【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7、C【解析】
根据中心对称图形的概念解答即可.【详解】A.是中心对称图形,B.是中心对称图形,C.是中心对称图形,D.不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合.综上所述:是中心对称图形的有3个,故选C.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.熟练掌握中心对称图形的定义是解题关键.8、C【解析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、将点A(-2,3)向上平移3个单位后得到的点的坐标为(-2,6),是假命题;B、三角形的三条角平分线的交点到三角形的三条边的距离相等,是假命题;C、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,是真命题;D、平行四边形的对角线互相平分,是假命题;故选:C.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理,难度适中.9、D【解析】
根据A,C的坐标特点得到B,D也关于原点对称,故可求出D的坐标,即可判断.【详解】∵平行四边形ABCD中,A(m,n),C(-m,-n)关于原点对称,∴B,D也关于原点对称,∵B(2,-1)∴D(-2,1)故点D在第四象限,点D与原点距离是故丙丁正确,选D.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知各点的坐标特点.10、D【解析】
根据平行四边形的判定方法一一判断即可【详解】解:A、两组对边分别平行,可判定该四边形是平行四边形,故A不符合题意;B、两组对角分别相等,可判定该四边形是平行四边形,故B不符合题意;C、对角线互相平分,可判定该四边形是平行四边形,故C不符合题意;B、一组对边平行另一组对边相等,不能判定该四边形是平行四边形,也可能是等腰梯形,故D符合题意.故选D.【点睛】此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.11、D【解析】
根据直线所在的象限,确定k,b的符号.【详解】由图象可知,两条直线的一次项系数都是负数,且一条直线与y轴的交点在y轴的正半轴上,b为正数,另一条直线的与y轴的交点在y轴的负半轴上,b为负数,符合条件的方程组只有D.故选D.【点睛】一次函数y=kx+b的图象所在象限与常数k,b的关系是:①当k>0,b>0时,函数y=kx+b的图象经过第一,二,三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一,三,四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一,二,四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二,三,四象限,反之也成立.12、C【解析】
根据题意可以分析出各个过程中A中水面上的快慢,从而可以解答本题.【详解】由题意和图形可知,从开始到水面到达A和B连通的地方这个过程中,A中水面上升比较快,从水面到达A和B连通的地方到B中水面和A中水面持平这个过程中,A中水面的高度不变,从B中水面和A中水面持平到最后两个容器中水面上升到最高这个过程中,A中水面上升比较慢,故选C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(每题4分,共24分)13、【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.【详解】∵四边形OABC是矩形,∴∠B=90°,∵BD=BE=1,∴∠BED=∠BDE=45°,∵沿直线DE将△BDE翻折,点B落在点B′处,∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,∴∠BEB′=∠BDB′=90°,∵点B的坐标为(3,2),∴点B′的坐标为(2,1).故答案为:(2,1).【点睛】此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形14、1.【解析】
根据代表的是平均数,利用平均数的公式即可得出答案.【详解】由题意,可得.故答案为:1.【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.15、y=2x-1.【解析】
根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(9,3)代入即可得出平移后的直线解析式.【详解】设平移后直线的解析式为y=2x+b.把(9,3)代入直线解析式得3=2×9+b,解得b=-1.所以平移后直线的解析式为y=2x-1.故答案为:y=2x-1.【点睛】本题考查了一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时,k的值不变是解题的关键.16、三【解析】
根据函数的平移规律,一次函数的性质,可得答案.【详解】由正比例函数的图象向上平移3个单位,得,一次函数经过一二四象限,不经过三象限,故答案为:三.【点睛】本题考查了一次函数图象与几何变换,利用函数的平移规律:上加下减,左加右减是解题关键.17、普查【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】对我国首艘国产航母002型各零部件质量情况的调查是事关重大的调查,最适合采用的调查方式是普查.故答案为:普查【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.18、.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.三、解答题(共78分)19、(1)CE+CF=12AB;(2)342;(3)CF−CE=【解析】
(1)如图1中,连接EF,在CO上截取CN=CF,只要证明△OFN≌△EFC,即可推出CE+CF=OC,再证明OC=12AB(2)先证明△OBE≌△OCF得到BE=CF,在Rt△CEF中,根据CE2+CF2=EF2即可解决问题.(3)结论:CF-CE=2O`C,过点O`作O`H⊥AC交CF于H,只要证明△FO`H≌△EO`C,推出FH=CE,再根据等腰直角三角形性质即可解决问题.【详解】(1)结论CE+CF=12理由:如图1中,连接EF,在CO上截取CN=CF.∵∠EOF+∠ECF=180°,∴O、E.C.F四点共圆,∵∠ABC=60°,四边形ABCD是菱形,∴∠BCD=180°−∠ABC=120°,∴∠ACB=∠ACD=60°,∴∠OEF=∠OCF,∠OFE=∠OCE,∴∠OEF=∠OFE=60°,∴△OEF是等边三角形,∴OF=FE,∵CN=CF,∠FCN=60°,∴△CFN是等边三角形,∴FN=FC,∠OFE=∠CFN,∴∠OFN=∠EFC,在△OFN和△EFC中,FO=FE∠OFN=∠EFCFN=FC∴△OFN≌△EFC,∴ON=EC,∴CE+CF=CN+ON=OC,∵四边形ABCD是菱形,∠ABC=60°,∴∠CBO=30°,AC⊥BD,在RT△BOC中,∵∠BOC=90°,∠OBC=30°,∴OC=12BC=1∴CE+CF=12(2)连接EF∵在菱形ABCD中,∠ABC=90°,∴菱形ABCD是正方形,∴∠BOC=90°,OB=OC,AB=AC,∠OBE=∠OCF=45°,∠BCD=90°∵∠EOF+∠BCD=180°,∴∠EOF=90°,∴∠BOE=∠COF∴△OBE≌△OCF,∴BE=CF,∵BE=32∴CF=32在Rt△ABC中,AB2+BC2=AC2,AC=42∴BC=4,∴CE=52在Rt△CEF中,CE2+CF2=EF2,∴EF=342答:线段EF的长为342(3)结论:CF−CE=2O`C.理由:过点O`作O`H⊥AC交CF于H,∵∠O`CH=∠O`HC=45°,∴O`H=O`C,∵∠FO`E=∠HO`C,∴∠FO`H=∠CO`E,∵∠EO`F=∠ECF=90°,∴O`.C.F.E四点共圆,∴∠O`EF=∠OCF=45°,∴∠O`FE=∠O`EF=45°,∴O`E=O`F,在△FO`H和△EO`C中,FO`=O`E∠FO`H=∠EO`CO`H=O`C∴△FO`H≌△EO`C,∴FH=CE,∴CF−CE=CF−FH=CH=2O`C.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、四点共圆等知识,解题的关键是发现四点共圆,添加辅助线构造全等三角形,属于中考压轴题.20、环卫局每个月实际改造类垃圾箱房2250个.【解析】
设原计划每个月改造垃圾房万个,然后根据题意列出分式方程,解方程即可得出答案.【详解】设原计划每个月改造垃圾房万个,则实际每月改造万个..化简得:.解得:,.经检验:,是原方程的解.其中符合题意,不符合题意舍去.万个,即2250个.答:环卫局每个月实际改造类垃圾箱房2250个.【点睛】本题主要考查分式方程的应用,能够根据题意列出分式方程是解题的关键.21、x=-1【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:1+6-x=-1x+6,解得:x=-1,经检验x=-1是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.22、(1)y=-0.5x+1,y=;(1)-1<x<0或x>4.【解析】
(1)先把C点坐标代入反比例函数求出m,再根据D坐标的横坐标为-1求出D点坐标,再把C,D坐标代入一次函数求出k,b的值;(1)根据C,D两点的横坐标,结合图像即可求解.【详解】(1)把C(4,-1)代入反比例函数,得m=4×(-1)=-4,∴y=;设D(-1,y),代入y=得y=-1,∴D(-1,1)把C(4,-1),D(-1,1)代入一次函数得解得k=-0.5,b=1∴y=-0.5x+1(1)∵C,D两点的横坐标分别为4,-1,由图像可知当-1<x<0或x>4,一次函数的值小于反比例函数的值.【点睛】此题主要考查反比例函数与一次函数,解题的关键是熟知待定系数法确定函数关系式.23、(1)详见解析;(2)矩形AODE面积为【解析】
(1)根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形;(2)证明△ABC是等边三角形,得出OA=×4=2,由勾股定理得出OB=2,由菱形的性质得出OD=OB=2,即可求出四边形AODE的面积.【详解】(1)证明:∵DE∥AC,AE∥BD,∴四边形AO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工人装修施工免责协议
- 小儿高热惊厥课件
- 护理甲状腺结节
- 2024年度工程翻译服务合同翻译质量标准3篇
- 河南师范大学《下乡写生》2022-2023学年第一学期期末试卷
- 《外汇入门手册》课件
- 2024年度预拌混凝土购销合同(含质量保证金条款)2篇
- 电商运营培训心得体会
- 2024年度建筑工程项目贷款居间合同3篇
- 基于2024年度计划的农产品批量采购合同3篇
- 2024陕西省西安国际港务区定向招聘历年高频难、易错点500题模拟试题附带答案详解
- 2024版挖掘机月租赁合同范本
- 医院医用耗材管理委员会工作制度
- 2024秋期国家开放大学《财务报表分析》一平台在线形考(作业一至五)试题及答案
- 工程建设领域推行分包单位农民工工资委托施工总承包单位代发制度协议书
- 2024年秋新冀教版英语三年级上册 unit 5 lesson 2 教学课件
- 起重机械使用单位安全总监题库
- 1输变电工程施工质量验收统一表式(线路工程)-2024年版
- 2024年湖北省中考物理试卷(含解析)
- 建设工程施工保险协议书书
- 液压传动智慧树知到答案2024年武汉科技大学
评论
0/150
提交评论