2024年广东省广州荔湾区六校联考数学八年级下册期末调研试题含解析_第1页
2024年广东省广州荔湾区六校联考数学八年级下册期末调研试题含解析_第2页
2024年广东省广州荔湾区六校联考数学八年级下册期末调研试题含解析_第3页
2024年广东省广州荔湾区六校联考数学八年级下册期末调研试题含解析_第4页
2024年广东省广州荔湾区六校联考数学八年级下册期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年广东省广州荔湾区六校联考数学八年级下册期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.以下问题,不适合用普查的是()A.了解全班同学每周阅读的时间 B.亚航客机飞行前的安全检测C.了解全市中小学生每天的零花钱 D.某企业招聘部门经理,对应聘人员面试2.在平行四边形ABCD中,若∠A=50A.∠B=130∘ B.∠B+∠C=180∘3.计算的结果是()A.3 B.﹣3 C.9 D.﹣94.若五箱苹果的质量(单位:kg)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是()A.18和18 B.19和18 C.20和18 D.20和195.下列各点中,与点(-3,4)在同一个反比例函数图像上的点是A.(2,-3) B.(3,4) C.(2,-6) D.(-3,-4)6.已知x=-1是一元二次方程x2+px+q=0的一个根,则代数式p-q的值是()A.1 B.-1 C.2 D.-27.若关于x的方程的解为正数,则m的取值范围是A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠88.已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.59.函数y=的自变量x的取值范围是()A.x≠2 B.x<2 C.x≥2 D.x>210.若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.2311.小明得到育才学校数学课外兴趣小组成员的年龄情况统计如下表:年龄(岁)13141516人数(人)515x10-x那么对于不同x的值,则下列关于年龄的统计量不会发生变化的是()A.众数,中位数 B.中位数,方差 C.平均数,中位数 D.平均数,方差12.若一个多边形的内角和是外角和的5倍,则这个多边形的边数是()A.12 B.10 C.8 D.11二、填空题(每题4分,共24分)13.已知两个相似三角形的相似比为4:3,则这两个三角形的对应高的比为______.14.在一个扇形统计图中,表示种植苹果树面积的扇形的圆心角为,那么苹果树面积占总种植面积的___.15.化简的结果为_____.16.与最简二次根式是同类二次根式,则a=__________.17.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.18.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择___________.三、解答题(共78分)19.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.20.(8分)(1)计算:(-1)2019-|-4|+(3.14-π)0+()-1(2)先化简,再求值:(1-)÷,再从-1,0,1和2中选一个你认为合适的数作为x的值代入求值.21.(8分)先化简,再求值:,其中x=,y=.22.(10分)小林为探索函数的图象与性经历了如下过程(1)列表:根据表中的取值,求出对应的值,将空白处填写完整2.533.544.556____2____1.21(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象.(3)若函数的图象与的图象交于点,,且为正整数),则的值是_____.23.(10分)阅读理解题在平面直角坐标系中,点到直线的距离公式为:,例如,求点到直线的距离.解:由直线知:所以到直线的距离为:根据以上材料,解决下列问题:(1)求点到直线的距离.(2)若点到直线的距离为,求实数的值.24.(10分)如图,在梯形中中,,是的中点,,,,,点是边上一动点,设的长为.(1)当的值为多少时,以点为顶点的三角形为直角三角形;(2)当的值为多少时,以点为顶点的四边形为平行四边形;(3)点在边上运动的过程中,以为顶点的四边形能否构成菱形?试说明理由.25.(12分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为27826.已知关于的一次函数,求满足下列条件的m的取值范围:(1)函数值y随x的增大而增大;(2)函数图象与y轴的负半轴相交;(3)函数的图象过原点.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、了解全班同学每周阅读的时间适合普查,故A不符合题意;B、亚航客机飞行前的安全检测是重要的调查,故B不符合题意;C、了解全市中小学生每天的零花钱适合抽要调查,故C符合题意;D、某企业招聘部门经理,对应聘人员面试,适合普查,故D不符合题意;故选C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、D【解析】

由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角可以求出∠C,∠D和∠B与∠A是邻角故可求出∠D和∠B,由此可以分别求出它们的度数,然后可以判断了.【详解】∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∠A+∠B=180°而∠A=50°,∴∠C=∠A=50°,∠B=∠D=130°,∴D选项错误,故选D.【点睛】本题考查平行四边形的性质,平行四边形的对角相等,邻角互补;熟练运用这个性质求出其它三个角是解决本题的关键.3、A【解析】

根据公式进一步加以计算即可.【详解】,故选:A.【点睛】本题主要考查了二次根式的计算,熟练掌握相关公式是解题关键.4、B【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.故选:B.【点睛】本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.5、C【解析】

先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.【详解】∵反比例函数y=kx过点(−3,4),∴k=(−3)×4=−12,A.∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;B.∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;C.∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;D.∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。故选C.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值6、A【解析】

由一元二次方程的解的定义,把x=-1代入已知方程,化简整理即可求得结果.【详解】解:∵x=-1是一元二次方程x2+px+q=0的一个根,∴(-1)2+p×(-1)+q=0,即∴p-q=1.故选A.【点睛】本题考查了一元二次方程的解的定义,此类问题的一般思路:见解代入,整理化简.7、C【解析】

原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,∵原方程的解为正数,∴2﹣>0,解得m<6,又∵x﹣2≠0,∴2﹣≠2,即m≠0.故选C.【点睛】本题主要考查分式方程与不等式,解此题的关键在于先求出方程的解,再得到m的不等式求解即可,需要注意分式方程的分母不能为0.8、D【解析】试题解析:∵=,且是整数,∴2是整数,即1n是完全平方数,∴n的最小正整数为1.故选D.点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.9、D【解析】

根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:∵函数y=有意义,∴x-20,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.10、B【解析】

直接利用8<<9,进而得出a,b的值即可得出答案.【详解】解∵8<<9,∴8+2<+2<9+2,∵a<+2<b,其中a,b是两个连续整数,∴a=10,b=11,∴a+b=10+11=1.故选:B.【点睛】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.11、A【解析】

由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【详解】由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.12、A【解析】

根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=1.故选:A.【点睛】本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.二、填空题(每题4分,共24分)13、4:1【解析】

直接利用相似三角形的性质求解.【详解】∵两个相似三角形的相似比为4:1,∴这两个三角形的对应高的比为4:1.故答案为:4:1.【点睛】本题主要考查相似三角形的性质,掌握“相似三角形的对应角相等,对应边的比相等;相似三角形周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方”是解题的关键.14、30%.【解析】

因为圆周角是360°,种植苹果树面积的扇形圆心角是108°,说明种植苹果树面积占总面积的108°÷360°=30%.据此解答即可.【详解】由题意得:种植苹果树面积占总面积的:108°÷360°=30%.故答案为:30%.【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的分率等于该部分所对应的扇形圆心角的度数与360°的比值.15、x【解析】

先把两分数化为同分母的分数,再把分母不变,分子相加减即可.【详解】,故答案为x.16、1.【解析】

先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【详解】∵与最简二次根式是同类二次根式,且=1,∴a+1=3,解得:a=1.故答案为1.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.17、>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),∴关于x的不等式mx+n<x+n-2的解集为x>1,故答案为x>1.18、甲【解析】

首先比较平均数,平均数相同时选择方差较小的运动员参加即可.【详解】解:∵,∴从甲和丙中选择一人参加比赛,∵S甲2=S乙2<S丙2<S丁2,

∴选择甲参赛;

故答案为:甲.【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.三、解答题(共78分)19、画图见解析.【解析】【分析】(1)结合网格特点以及轴对称图形有定义进行作图即可得;(2)结合网格特点以及中心对称图形的定义按要求作图即可得.【详解】(1)如图所示(答案不唯一);(2)如图所示(答案不唯一).【点睛】本题考查了作图,轴对称图形、中心对称图形等,熟知网格特点以及轴对称图形、中心对称图形的定义是解题的关键.20、(1)-1;(2)x=-1时,原式=.【解析】

(1)根据绝对值.零指数幂和负整数指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后从-1,0,1和2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】解:(1)(-1)2019-|-4|+(3.14-π)0+()-1=(-1)-4+1+3=-1;(2)(1-)÷===,当x=-1时,原式=.【点睛】本题考查分式的化简求值.零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.21、x+y,.【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.试题解析:原式===x+y,当x=,y==2时,原式=﹣2+2=.22、(1)3,1.5;(1)见解析;(3)1.【解析】

(1)当时,,即可求解;(1)描点描绘出以下图象,(3)在(1)图象基础上,画出,两个函数交点为,,即可求解.【详解】解:(1)当时,,同理当时,,故答案为3,1.5;(1)描点描绘出以下图象,(3)在(1)图象基础上,画出,两个函数交点为,,即,故答案为1.【点睛】本题考查的是反比例函数综合运用,涉及到一次函数基本性质、复杂函数的作图,此类题目通常在作图的基础上,依据图上点和线之间的关系求解.23、(1)1;(2)1或-3.【解析】

(1)根据点到直线的距离公式求解即可;(2)根据点到直线的距离公式,列出方程即可解决问题.【详解】解:由直线知:A=3,B=-4,C=-5,∴点到直线的距离为:d=;(2)由点到直线的距离公式得:∴|1+C|=2解得:C=1或-3.点睛:本题考查点到直线的距离公式的运用,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.24、(1)当的值为3或8时,以点为顶点的三角形为直角三角形;(2)当的值为1或11时,以点为顶点的四边形为平行四边形;(3)以点为顶点的四边形能构成菱形,理由详见解析.【解析】

(1)过AD作于,于,当时,分情况讨论,求出即可;(2)分为两种情况,画出图形,根据平行四边形的性质推出即可;(3)化成图形,根据菱形的性质和判定求出BP即可.【详解】解(1)如图,分别过AD作于,于∴而∴∴若以为顶点的三角形为直角三角形,则或,(在图中不存在)当时∴与重合∴当时∴与重合∴故当的值为3或8时,以点为顶点的三角形为直角三角形;(2)若以点为顶点的四边形为平行四边形,那么,有两种情况:①当在的左边,∵是的中点,∴∴②当在的右边,故当的值为1或11时,以点为顶点的四边形为平行四边形;(3)由(2)知,当时,以点为顶点的四边形能构成菱形当时,以点为顶点的四边形是平行四边形,∴,过作于,∵,,则,∴.∴,∴故此时是菱形即以点为顶点的四边形能构成菱形.【点睛】此题考查直角三角形的性质,平行四边形的判定,解题关键在于作辅助线和利用勾股定理进行计算.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论