江苏省苏州市2024届数学八年级下册期末综合测试试题含解析_第1页
江苏省苏州市2024届数学八年级下册期末综合测试试题含解析_第2页
江苏省苏州市2024届数学八年级下册期末综合测试试题含解析_第3页
江苏省苏州市2024届数学八年级下册期末综合测试试题含解析_第4页
江苏省苏州市2024届数学八年级下册期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市2024届数学八年级下册期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个2.A. B. C. D.3.将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.4.如图,△ABC是面积为27cm2的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为()A.9cm2 B.8cm2 C.6cm2 D.12cm25.在同一平面直角坐标系内,将函数的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,得到图象的顶点坐标是()A.(,1) B.(1,) C.(2,) D.(1,)6.如图正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1 B.2 C.3 D.47.如图,在△中,、是△的中线,与相交于点,点、分别是、的中点,连结.若=6cm,=8cm,则四边形DEFG的周长是()A.14cm B.18cmC.24cm D.28cm8.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.129.已知关于的分式方程无解,则的值为()A. B. C. D.或10.如果一个等腰三角形的两边长为4、9,则它的周长为()A.17 B.22 C.17或22 D.无法计算11.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形12.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.14.如图,在平面直角坐标系中,菱形的顶点在轴上,顶点在反比例函数的图象上,若对角线,则的值为__________.15.已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.16.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为_____.17.公元9世纪,阿拉伯数学家阿尔•花拉子米在他的名著《代数学》中用图解一元二次方程,他把一元二次方程x2+2x-35=0写成x2+2x=35的形式,并将方程左边的x2+2x看作是由一个正方形(边长为x)和两个同样的矩形(一边长为x,另一边长为1)构成的矩尺形,它的面积为35,如图所示。于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表小为:x2+2x+____=35+_______,整理,得18.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为cm(结果不取近似值).三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).⑴求和的值;⑵过点作直线平行轴交轴于点,连结AC,求△的面积.20.(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.21.(8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉子听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉子得1分,本次决赛,学生成绩为x(分),且50≤x<100(无满分),将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有________名学生参加;(2)直接写出表中:a=,b=。(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.22.(10分)如图,在平面直角坐标系中,四边形为平行四边形,为坐标原点,,将平行四边形绕点逆时针旋转得到平行四边形,点在的延长线上,点落在轴正半轴上.(1)证明:是等边三角形:(2)平行四边形绕点逆时针旋转度.的对应线段为,点的对应点为①直线与轴交于点,若为等腰三角形,求点的坐标:②对角线在旋转过程中设点坐标为,当点到轴的距离大于或等于时,求的范围.23.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及m的值.解:设另一个因式为,得则.解得:,另一个因式为,m的值为问题:仿照以上方法解答下面问题:已知二次三项式有一个因式是,求另一个因式以及k的值.24.(10分)(探究与证明)在正方形ABCD中,G是射线AC上一动点(不与点A、C重合),连BG,作BH⊥BG,且使BH=BG,连GH、CH.(1)若G在AC上(如图1),则:①图中与△ABG全等的三角形是.②线段AG、CG、GH之间的数量关系是.(2)若G在AC的延长线上(如图2),那么线段AG、CG、BG之间有怎样的数量关系?写出结论并给出证明;(应用)(3)如图3,G在正方形ABCD的对角线CA的延长线上,以BG为边作正方形BGMN,若AG=2,AD=4,请直接写出正方形BGMN的面积.25.(12分)已知:如图,一次函数的图象与反比例函数()的图象交于点.轴于点,轴于点.一次函数的图象分别交轴、轴于点、点,且,.(1)求点的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当取何值时,一次函数的值小于反比例函数的值?26.某高速公路要对承建的工程进行招标,现在甲、乙两个工程队前来投标,根据两队的申报材料估计:若甲、乙两队合作,24天可以完成;若由甲队单独做20天后,余下的工程由乙队做,还需40天完成,求甲、乙两队单独完成这项工程各需多少天?

参考答案一、选择题(每题4分,共48分)1、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.2、C【解析】

根据根式的减法运算,首先将化简,再进行计算.【详解】解:故选C【点睛】本题主要考查根式的减法,关键在于化简,应当熟练掌握.3、B【解析】

按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.【详解】解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.【点睛】本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.4、A【解析】

先证明△AEH∽△AFG∽△ABC,再根据相似三角形的面积比是相似比的平方,即可得出结果.【详解】解:∵是面积为的等边三角形∴∵矩形平行于∴∴∵被截成三等分∴,∴∴∴图中阴影部分的面积故选:A【点睛】本题考查了相似三角形的判定和性质,正确理解题意并能灵活运用相关判定方法和性质是解题的关键.5、B【解析】由原抛物线的顶点坐标,根据横坐标与纵坐标“左加右减”可得到平移后的顶点坐标:∵y=2x2+4x+1=2(x2+2x)+1=2[(x+1)2﹣1]+1=2(x+1)2﹣1,∴原抛物线的顶点坐标为(﹣1,﹣1).∵将函数的图象沿x轴方向向右平移2个单位长度后再沿y轴向下平移1个单位长度,其顶点坐标也作同样的平移,∴平移后图象的顶点坐标是(﹣1+2,﹣1-1),即(1,﹣2).故选B.6、D【解析】

由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,

则可判断各命题是否正确.【详解】∵四边形ABCD是正方形,

∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°

∵△AEF是等边三角形

∴AE=AF=EF,∠EAF=∠AEF=60°

∵AD=AB,AF=AE

∴△ABF≌△ADE

∴BF=DE

∴BC-BF=CD-DE

∴CE=CF

故①正确

∵CE=CF,∠C=90°

∴EF=CE,∠CEF=45°

∴AF=CE,

∵∠AED=180°-∠CEF-∠AEF

∴∠AED=75°

故②③正确

∵AE=AF,CE=CF

∴AC垂直平分EF

故④正确

故选D.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.7、A【解析】

试题分析:∵点F、G分别是BO、CO的中点,BC=8cm∴FG=BC=4cm∵BD、CE是△ABC的中线∴DE=BC=4cm∵点F、G、E、D分别是BO、CO、AB、AC的中点,AO=6cm∴EF=AO=3cm,DG=AO=3cm∴四边形DEFG的周长="EF+FG+DG+DE=14"cm故选A考点:1、三角形的中位线;2、四边形的周长8、C【解析】

由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.故选C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9、D【解析】

分式方程去分母转化为整式方程,由分式方程无解得到x−3=0,确定出x的值,代入整式方程计算即可求出m的值.【详解】解:去分母得:3−2x−9+mx=−x+3,整理得:(m−1)x=9,当m−1=0,即m=1时,该整式方程无解;当m−1≠0,即m≠1时,由分式方程无解,得到x−3=0,即x=3,把x=3代入整式方程得:3m−3=9,解得:m=4,综上,m的值为1或4,故选:D.【点睛】此题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10、B【解析】

求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=1.故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.11、A【解析】

根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,

∴OA=OC,OB=OD,

∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);

故选:A.【点睛】本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.12、A【解析】

作DE⊥AB于E,∵AB=10,S△ABD=15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.二、填空题(每题4分,共24分)13、2.【解析】试题分析:根据菱形的面积等于对角线乘积的一半解答.试题解析:∵AC=4cm,BD=8cm,∴菱形的面积=×4×8=2cm1.考点:菱形的性质.14、-1【解析】

先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【详解】解:∵菱形的两条对角线的长分别是6和4,

∴C(-3,4),

∵点C在反比例函数y=的图象上,∴k=(-3)×4=-1.

故答案为:-1【点睛】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.15、【解析】

设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.【详解】解:设一次函数的解析式为:,解得:所以这个一次函数的解析式为:故答案为:【点睛】本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.16、1【解析】试题解析:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=1.17、111【解析】

由图可知添加一个边长为1的正方形即可补成一个完整的正方形,由此即可得出答案.【详解】解:由图可知添加一个边长为1的正方形即可补成一个面积为36的正方形,故第一个空和第二个空均应填1,而大正方形的边长为x+1,故x+1=6,x=1,故答案为:1,1,1.【点睛】此题是信息题,首先读懂题意,正确理解题目解题意图,然后抓住解题关键,可以探索得到大正方形的边长为x+1,而大正方形面积为36,由此可以求出结果.18、【解析】

由于点B与点D关于AC对称,所以如果连接DQ,交AC于点P,那么△PBQ的周长最小,此时△PBQ的周长=BP+PQ+BQ=DQ+BQ.在Rt△CDQ中,由勾股定理先计算出DQ的长度,再得出结果.【详解】连接DQ,交AC于点P,连接PB、BD,BD交AC于O.

∵四边形ABCD是正方形,

∴AC⊥BD,BO=OD,CD=2cm,

∴点B与点D关于AC对称,

∴BP=DP,

∴BP+PQ=DP+PQ=DQ.

在Rt△CDQ中,DQ=cm,

∴△PBQ的周长的最小值为:BP+PQ+BQ=DQ+BQ=+1(cm).

故答案为(+1).【点睛】本题考查了正方形的性质;轴对称-最短路线问题,解题的关键是根据两点之间线段最短,确定点P的位置.三、解答题(共78分)19、(1)a=2,b=1(2)3【解析】试题分析:(1)因为直线与双曲线交于点B,将B点坐标分别代入直线与双曲线的解析式,即可解得与的值.(2)先利用直线BC平行于轴确定C点坐标为,然后根据三角形面积公式计算三角形面积即可.试题解析:(1)由两图象相交于点B,得解得:a=2,b=1(2)∵点B(-3,2),直线∥轴,∴C点坐标为,BC=3,∴S△ABC=.20、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解析】

(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.21、(1)50;(2)20,0.24;(3)详见解析;(4)52%.【解析】

(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【详解】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.4=20,b=12÷50=0.24,故答案为:20,0.24;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.4+0.12)×100%=52%,故答案为:52%.【点睛】本题考查频数分布直方图、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.22、(1)见解析(2)①P(0,)或(0,-4)②-8≤m≤-或≤m≤1【解析】

(1)根据A点坐标求出∠AOF=60°,再根据旋转的特点得到AO=AF,故可求解;(2)①设P(0,a)根据等腰三角形的性质分AP=OP和AO=OP,分别求出P点坐标即可;②分旋转过程中在第三象限时到轴的距离等于与旋转到第四象限时到轴的距离等于,再求出当旋转180°时的坐标,即可得到m的取值.【详解】(1)如图,过A点作AH⊥x轴,∵∴OH=2,AH=2∴AO=故AO=2OH∴∠OAH=30°∴∠AOF=90°-∠OAH=60°∵旋转∴AO=AF∴△AOF是等边三角形;(2)①设P(0,a)∵是等腰三角形当AP=OP时,(2-0)2+(2-a)2=a2解得a=∴P(0,)当AO=OP时,OP=AO=4∴P(0,-4)故为等腰三角形时,求点的坐标是(0,)或(0,-4);②旋转过程中点的对应点为,当开始旋转,至到轴的距离等于时,m的取值为-8≤m≤-;当旋转到第四象限,到轴的距离等于时,m=当旋转180°时,设C’的坐标为(x,y)∵C、关于A点对称,∴解得∴(1,)∴m的取值为≤m≤1,综上,当点到轴的距离大于或等于时,求的范围是-8≤m≤-或≤m≤1.【点睛】此题主要考查旋转综合题,解题的关键是熟知等边三角形的判定、等腰三角形的性质、勾股定理、对称性的应用.23、20.【解析】

根据例题中的已知的两个式子的关系,二次三项式的二次项系数是1,因式是的一次项系数也是1,利用待定系数法求出另一个因式所求的式子的二次项系数是2,因式是的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为,得则解得:,故另一个因式为,k的值为【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.24、(1)①△CBH,②AG1+CG1=GH1(1)10+8【解析】

探究与证明(1)①由题意可得AB=BC,BG=BH,∠ABG=∠CBH可证△ABG≌△BCH②由△ABG≌△BCH可得AG=CH,∠ACH=90°可得AG、CG、GH之间的数量关系.(1)连接CH,可证△ABG≌△BCH,可得△CHG是直角三角形,则AG1+CG1=GH1,且HG1=BG1+BH1=1BG1,可得线段AG、CG、BG之间.应用:(3)连接BD交AC于O,由正方形ABCD可得AC⊥BD,AO=BO=CO=1,则根据正方形GBMN的面积=BG1=GO1+BO1.可求正方形GBMN的面积.【详解】解:探究与证明:(1)①△CBH,②AG1+CG1=GH1理由如下:∵ABCD是正方形∴AB=CB,∠ABC=90°,∠BAC=∠BCA=45°又∵GB⊥BH∴∠ABG=∠CBH且BG=BH,AB=BC∴△ABG≌△BCH∴∠BAC=∠BCH=45°,AG=CH∴∠GCH=90°在Rt△GC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论