




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省黔东南州名校2024年八年级下册数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.62.已知点在反比例函数的图象上,则下列点也在该函数图象上的是()A. B. C. D.3.下列各曲线中,表示是的函数是()A. B. C. D.4.如图,线段AD由线段AB绕点A按逆时针方向旋转90∘得到,ΔEFG由ΔABC沿CB方向平移得到,且直线EF过点D.则∠BDF=A.30∘ B.45∘ C.505.若a<+2<b,其中a,b是两个连续整数,则a+b=()A.20 B.21 C.22 D.236.如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是()A.AB=AC B.AB=BC C.BE平分∠ABC D.EF=CF7.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,,则AB的长为()A. B. C.8 D.8.若关于的不等式组至少有四个整数解,且关于的分式方程的解为整数,则符合条件的所有整数有()A.3个 B.4个 C.5个 D.2个9.下列说法错误的是()A.“买一张彩票中大奖”是随机事件B.不可能事件和必然事件都是确定事件C.“穿十条马路连遇十次红灯”是不可能事件D.“太阳东升西落”是必然事件10.下列语句正确的是()A.的平方根是6 B.负数有一个平方根C.的立方根是 D.8的立方根是2二、填空题(每小题3分,共24分)11.如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE=.12.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为1,L2、L3的距离为2,则正方形的边长为__________.13.已经RtABC的面积为,斜边长为,两直角边长分别为a,b.则代数式a3b+ab3的值为_____.14.当时,二次根式的值是_________.15.线段、正三角形,平行四边形、菱形中,只是轴对称图形的是_________.16.如图,在矩形ABCD中,AD=5,AB=3,点E是边BC上一点,若ED平分∠AEC,则ΔABE的面积为________.17.在反比例函数图象上有三个点A(,)、B(,)、C(,),若<0<<,则,,的大小关系是.(用“<”号连接)18.若式子在实数范围内有意义,则应满足的条件是_____________.三、解答题(共66分)19.(10分)小强打算找印刷公司设计一款新年贺卡并印刷.如图1是甲印刷公司设计与印刷卡片计价方式的说明(包含设计费与印刷费),乙公司的收费与印刷卡片数量的关系如图2所示.(1)分别写出甲乙两公司的收费y(元)与印刷数量x之间的关系式.(2)如果你是小强,你会选择哪家公司?并说明理由.20.(6分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为8000元,今年A型智能手表的售价每只比去年降了60元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如下表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?
A型智能手表
B型智能手表
进价
130元/只
150元/只
售价
今年的售价
230元/只
21.(6分)(1)计算:(1)化简求值:,其中x=1.22.(8分)国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A组:时间小于0.5小时;B组:时间大于等于0.5小时且小于1小时;C组:时间大于等于1小时且小于1.5小时;D组:时间大于等于1.5小时.根据以上信息,回答下列问题:(1)A组的人数是人,并补全条形统计图;(2)本次调查数据的中位数落在组;(3)根据统计数据估计该地区25000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少人.23.(8分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.24.(8分)仿照下列过程:;;(1)运用上述的方法可知:=,=;(2)拓展延伸:计算:++…+.25.(10分)如图,在中,,,点、同时从点出发,以相同的速度分别沿折线、射线运动,连接.当点到达点时,点、同时停止运动.设,与重叠部分的面积为.(1)求长;(2)求关于的函数关系式,并写出的取值范围;(3)请直接写出为等腰三角形时的值.26.(10分)如图,在平面直角坐标系中,△ABC的顶点A、B分别落在x轴、y轴的正半轴上,顶点C在第一象限,BC与x轴平行.已知BC=2,△ABC的面积为1.(1)求点C的坐标.(2)将△ABC绕点C顺时针旋转90°,△ABC旋转到△A1B1C的位置,求经过点B1的反比例函数关系式.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
试题解析:如图,连接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当PA最小时,EF也最小,即当AP⊥CB时,PA最小,∵AB۰AC=BC۰AP,即AP==4.8,∴线段EF长的最小值为4.8;故选B.考点:1.勾股定理、矩形的判定与性质、垂线段最短.2、D【解析】
先把点(2,3)代入反比例函数,求出k的值,再根据k=xy为定值对各选项进行逐一检验即可.【详解】∵点(2,−3)在反比例函数的图象上,∴k=2×(−3)=-1.A、∵1×5=5≠−1,∴此点不在函数图象上;B、∵-1×5=-5=−1,∴此点不在函数图象上;C、∵3×2=1≠−1,∴此点不在函数图象上;D、∵(−2)×3=-1,∴此点在函数图象上.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、B【解析】
对于x的每一个值,y都有唯一的值与它对应,则称y是x的函数,据此观察图象可得.【详解】解:A,C,D曲线,对于每一个x值,都有2个y值与它对应,因此不符合函数的定义,B中一个x对应一个y值,故B曲线表示y是x的函数.故答案为:B【点睛】本题考查了函数的定义,准确把握定义是解题的关键.4、B【解析】
由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,
∴∠DAB=90°,AD=AB,
∴∠ABD=45°,
∵△EFG是△ABC沿CB方向平移得到,
∴AB∥EF,
∴∠BDF=∠ABD=45°;故选:B【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.5、B【解析】
直接利用8<<9,进而得出a,b的值即可得出答案.【详解】解∵8<<9,∴8+2<+2<9+2,∵a<+2<b,其中a,b是两个连续整数,∴a=10,b=11,∴a+b=10+11=1.故选:B.【点睛】此题主要考查了估算无理数的大小,得出a,b的值是解题关键.6、A【解析】
当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;【详解】解:当AB=BC时,四边形DBFE是菱形;理由:∵点D、E、F分别是边AB、AC、BC的中点,∴DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵DE=BC,EF=AB,∴DE=EF,∴四边形DBFE是菱形.故B正确,不符合题意,当BE平分∠ABC时,∴∠ABE=∠EBC∵DE∥BC,∴∠CBE=∠DEB∴∠ABE=∠DEB∴BD=DE∴四边形DBFE是菱形,故C正确,不符合题意,当EF=FC,∵BF=FC∴EF=BF,∴四边形DBFE是菱形,故D正确,不符合题意,故选A.【点睛】本题考查三角形的中位线定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.7、A【解析】
由平行四边形ABCD中,OA=OB得到平行四边形ABCD是矩形,又,得到三角形AOD为等边三角形,再利用勾股定理得到AB的长.【详解】解:∵四边形ABCD为平行四边形,对角线AC、BD相交于点O,∴OA=OC,OB=OD,又∵OA=OB,∴OA=OD=OB=OC,∴平行四边形ABCD为矩形,∠DAB=90°,而,∴为等边三角形,∴AD=OD=OA=OB=4,在Rt中,AD=4,DB=2OD=8,∴,故选:A.【点睛】本题利用了矩形的判定和性质,等边三角形的判定及性质,勾股定理定理的应用求解.属于基础题.8、C【解析】
由不等式组至少有4个整数解,可得的取值范围,由方程的解是整数,可得的值,综合可得答案.【详解】解:因为由①得:,所以,由②得:<,即<,解得:>,又因为不等式组至少有4个整数解,所以,所以,又因为:,去分母得:,解得:,而方程的解为整数,所以,所以的值可以为:,综上的值可以为:,故选C.【点睛】本题考查不等式组的整数解的问题,方程的整数解问题,都是初中数学学习的难点,关键是理解题意,其中不等式组的整数解利用数轴得到范围是解题关键.9、C【解析】
根据随机事件和确定事件以及不可能事件和必然事件的概念即可解答.【详解】A、“买一张彩票中大奖”是随机事件,正确,不合题意;B、不可能事件和必然事件都是确定事件,正确,不合题意;C、“穿十条马路连遇十次红灯”是不可能事件,错误,符合题意;D、太阳东升西落”是必然事件,正确,不合题意.故选:C.【点睛】本题考查了随机事件,确定事件,不可能事件,必然事件的概念,正确理解概念是解题的关键.10、D【解析】
根据平方根和立方根的定义、性质求解可得.【详解】A、62的平方根是±6,此选项错误;B、负数没有平方根,此选项错误;C、(-1)2的立方根是1,此选项错误;D、8的立方根是2,此选项正确;故选:D.【点睛】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.二、填空题(每小题3分,共24分)11、1【解析】试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到DE=12考点:三角形中位线定理.12、【解析】
如图,过D作于D,交于E,交于F,根据平行的性质可得,再由同角的余角相等可得,即可证明,从而可得,根据勾股定理即可求出AD的长度.【详解】如图,过D作于D,交于E,交于F∵∴∴由同角的余角相等可得∵∴∴∴故答案为:.【点睛】本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.13、14【解析】
根据两直角边乘积的一半表示出面积,把已知面积代入求出ab的值,利用勾股定理得到a2+b2=,将代数式a3b+ab3变形,把a+b与ab的值代入计算即可求出值.【详解】解:∵的面积为∴=解得=2根据勾股定理得:==7则代数式==2×7=14故答案为:14【点睛】本题主要考查了三角形的面积公式、勾股定理、因式分解等知识点,把要求的式子因式分解,再通过面积公式和勾股定理等量代换是解题的关键.14、3【解析】
根据题意将代入二次根式之中,然后进一步化简即可.【详解】将代入二次根式可得:,故答案为:3.【点睛】本题主要考查了二次根式的化简,熟练掌握相关方法是解题关键.15、正三角形【解析】
沿着一条直线对折,图形两侧完全重合的是轴对称图形,绕着某一点旋转180°后能与原图形重合的是中心对称图形,根据定义逐个判断即可.【详解】线段既是轴对称图形,又是中心对称图形;正三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;菱形既是轴对称图形,又是中心对称图形;只是轴对称图形的是正三角形,故答案为:正三角形.【点睛】本题考查轴对称图形与中心对称图形的判断,熟练掌握定义是解题的关键.16、1【解析】
首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=5,CD=AB=3,∴∠CED=∠ADE,∵ED平分∠AEC,∴∠AED=∠CED,∴∠EDA=∠AED,∴AD=AE=5,∴BE=AE2∴△ABE的面积=12BE•AB=12×4×3=故答案为:1.【点睛】本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.17、【解析】
根据反比例函数图象上点的坐标特征解答即可;【详解】解:∵反比例函数图象在第二,第四象限时,y随x的增大而增大,∵点A(,)在反比例函数图象上,<0,∴>0,∵B(,)、C(,)在反比例函数图象上,0<<,∴,∴,故答案为:.【点睛】本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.18、【解析】
直接利用二次根式的定义分析得出答案.【详解】解:二次根式在实数范围内有意义,则x-1≥0,解得:x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题(共66分)19、(1)甲的解析式为:y=乙的解析式为:;(2)当时,选择乙公司比较合算,当时,选择两个公司一样合算,当时,选择甲公司比较合算【解析】
(1)根据甲公司的方案分别求出不超过200张和超过200张的不等式即可得出甲的解析式,设乙的解析式为y=kx,根据图像,把(200,1600)代入即可得出乙的解析式;(2)先求出收费相同时的张数,根据解析式分别画出图象,根据图象即可得出结论.【详解】(1)当0≤x≤200时,甲公司的收费为y=5x+1000,当x>200时,甲公司的收费为y=1000+5×200+3(x-200)=3x+1400,∴甲公司的收费y(元)与印刷数量x之间的关系式为y=,根据图像设乙公司的收费y(元)与印刷数量x之间的关系式为y=kx,根据图像可知函数图像经过点(200,1600),∴1600=200k,解得k=8,∴乙公司的收费y(元)与印刷数量x之间的关系式为y=8x.(2)当0≤x≤200时,5x+1000=8x,解得x=,(舍去)当x>200时,3x+1400=8x,解得x=280,∴当印刷数量为280张时,甲、乙公司的收费相同,由(1)得到的关系式可画函数图象如下:根据图像可知,当0≤x≤280时,选择乙公司比较合算,当时,选择两个公司一样合算,当时,选择甲公司比较合算【点睛】本题考查一次函数图象和应用,根据求出的关系式画出函数图象,并从图象上获取信息是解题关键.20、(1)180元;(2)方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【解析】
(1)设今年A型智能手表每只售价x元,则去年售价每只为(x+60)元,由卖出的数量相同建立方程求出其解即可;
(2)设今年新进A型a只,则B型(100-a)只,获利y元,由条件表示出W与a之间的关系式,由a的取值范围就可以求出W的最大值.【详解】解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+60)元,根据题意得,解得:x=180,经检验,x=180是原方程的根,答:今年A型智能手表每只售价180元;(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100-a)只,根据题意得,W=(180-130)a+(230-150)(100-a)=-30a+8000,∵100-a≤3a,∴a≥25,∵-30<0,W随a的增大而减小,∴当a=25时,W增大=-30×25+8000=7250元,此时,进货方案为新进A型手表25只,新进B型手表75只,答:方案为A型手表25只,B型手表75只,获利最多,最大利润是7250元.【点睛】此题考查分式方程的应用,一次函数的运用,解题关键在于由销售问题的数量关系求出一次函数的解析式是关键.21、(1)3;(1),.【解析】
(1)根据实数的运算法则,先算乘方和开方,再算加减,注意0指数幂和负指数幂的运算;(1)根据分式的乘除法则先化简,再代入已知值计算.【详解】解:(1)原式=﹣1+4+﹣+1﹣1=3;(1)原式=•==﹣,当x=1时,原式=.【点睛】本题考核知识点:实数运算,分式化简求值.解题关键点:掌握实数运算法则和分式的运算法则,要注意符号问题.22、(1)50,补图见解析;(2)C;(3)14000人.【解析】试题分析:(1)根据题意和统计图可以得到A组的人数;
(2)根据(1)中补全的统计图可以得到这组数据的中位数落在哪一组;
(3)根据统计图中的数据可以估计该地区达到国家规定的每天在校体育锻炼时间的人数.试题解析:(1)由统计图可得,A组人数为:60÷24%-60-120-20=50,因此,本题正确答案是:50,补全的条形统计图如图所示.(2)由补全的条形统计图可得,中位数落在C组,因此,本题正确答案是:C.(3)根据题意可得,该地区25000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有:25000×(48%+8%)=14000(人),因此,本题正确答案是:14000.23、(1)矩形EFGH的面积为S=-x2+x(0<x<1);(2)S=.【解析】
(1)连接BD交EF于点M,根据菱形的性质得出AB=AD,BD⊥EF,求出△AEH是等边三角形,根据等边三角形的性质得出∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,求出EM=BE,即可求出答案;(2)根据正方形的性质求出x,再求出面积即可.【详解】(1)连接BD交EF于点M,∵四边形ABCD是菱形,∴AB=AD,∵AE=AH,∴EH∥BD∥FG,BD⊥EF,∵在菱形ABCD中,∠A=60°,AE=AH,∴△AEH是等边三角形,∴∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,∴EM=BE,∴EF=BE,∵AB=1,AE=x,∴矩形EFGH的面积为S=EH×EF=x×(1-x)=-x2+x(0<x<1);(2)当矩形EFGH是正方形时,EH=EF,即x=(1-x),解得:x=,所以S=x2=()2=.【点睛】考查了矩形的性质,菱形的性质,等边三角形的性质和判定,二次函数的解析式,正方形的性质,解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.24、(1)﹣2、-;(2)﹣1.【解析】
(1)将两式的分子、分母分别乘以﹣2、﹣计算可得;(2)由=﹣将原式展开后,两两相互抵消即可得.【详解】(1)===﹣2,===,(2)原式=﹣1+﹣﹣+…+﹣=﹣1.【点睛】本题主要考查分母有理化,解题的关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级下册语文教学计划
- 聘请英语 顾问合同范本
- 2 乡下人家(教学设计)2023-2024学年部编版语文四年级下册
- 14 《母鸡》教学设计-2023-2024学年统编版四年级语文下册
- 施工洽商合同范本
- 工资社保合同范本
- 土方清理施工合同范文
- 19《夜宿山寺》教学设计-2024-2025学年二年级上册语文统编版(五四制)
- 祠堂建造合同范本
- Module 3 Unit 2 Around my home(教学设计)-2024-2025学年牛津上海版(试用本)英语四年级上册
- 机器狗:技术成熟性能优越场景刚需放量在即2025
- 《教育强国建设规划纲要(2024-2035年)》解读-知识培训
- 《加油站安全管理培训课件》
- 《生态安全》课件
- 1.北京的春节 练习题(含答案)
- 抗震支架安装工程施工方案范文
- GB/T 45071-2024自然保护地分类分级
- 农业托管合同范例
- 食品中阿维菌素等55种农药最大残留限量
- 保洁部消杀培训
- 口服轮状疫苗知识课件
评论
0/150
提交评论