2024年云南省昭通市昭阳区苏家院镇中学八年级下册数学期末经典模拟试题含解析_第1页
2024年云南省昭通市昭阳区苏家院镇中学八年级下册数学期末经典模拟试题含解析_第2页
2024年云南省昭通市昭阳区苏家院镇中学八年级下册数学期末经典模拟试题含解析_第3页
2024年云南省昭通市昭阳区苏家院镇中学八年级下册数学期末经典模拟试题含解析_第4页
2024年云南省昭通市昭阳区苏家院镇中学八年级下册数学期末经典模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年云南省昭通市昭阳区苏家院镇中学八年级下册数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.不论x,y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数2.将抛物线向左平移2单位,再向上平移3个单位,则所得的抛物线解析式为()A. B.C. D.3.下列各组数中,能构成直角三角形的是()A.1,1, B.4,5,6 C.6,8,11 D.5,12,154.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以正方形的对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2为边作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(21008,0) B.(21008,﹣21008) C.(0,21010) D.(22019,﹣22019)5.方程的解是()A. B. C. D.或6.已知2是关于x的方程x2﹣2ax+4=0的一个解,则a的值是()A.1 B.2 C.3 D.47.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A. B.C. D.8.如果,那么下列各式正确的是()A.a+5<b+5 B.5a<5b C.a﹣5<b﹣5 D.9.下列二次根式中,属于最简二次根式的是A. B. C. D.10.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么的值为()A.13 B.19 C.25 D.16911.已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60cm和38cm,则△ABC的腰长和底边BC的长分别是()A.22cm和16cm B.16cm和22cmC.20cm和16cm D.24cm和12cm12.“已知:正比例函数与反比例函数图象相交于两点,其横坐标分别是1和﹣1,求不等式的解集.”对于这道题,某同学是这样解答的:“由图象可知:当或时,,所以不等式的解集是或”.他这种解决问题的思路体现的数学思想方法是()A.数形结合 B.转化 C.类比 D.分类讨论二、填空题(每题4分,共24分)13.如图,在正方向中,是对角线上一点,的延长线与交于点,若,则______;14.点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.15.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,,,,则成绩最稳定的是______.16.已知点,在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为4,则_______.17.在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______18.已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是_______________三、解答题(共78分)19.(8分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.(1)填空:△ABC≌△;AC和BD的位置关系是(2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为cm.20.(8分)如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=S矩形OBCD,问:(1)当点P在矩形的对角线OC上,求点P的坐标;(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.21.(8分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.22.(10分)解不等式组:x-3(x-2)23.(10分)如图,在中,于点D,E是的中点,若,求的长.24.(10分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=at(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?25.(12分)如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1.(1)断⊿BEC的形状,并说明理由;(2)判断四边形EFPH是什么特殊四边形?并证明你的判断.26.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB`C,连结B`D.结论1:△AB`C与▱ABCD重叠部分的图形是等腰三角形;结论2:B`D∥AC;(1)请证明结论1和结论2;(应用与探究)(2)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB`C,连接B`D若以A、C、D、B`为顶点的四边形是正方形,求AC的长(要求画出图形)

参考答案一、选择题(每题4分,共48分)1、A【解析】

把代数式x2+y2+2x-4y+7根据完全平方公式化成几个完全平方和的形式,再进行求解.【详解】解:x2+y2+2x-4y+7=x2+2x+1+y2-4y+4+2=(x+1)2+(y-2)2+2≥2,则不论x,y是什么实数,代数式x2+y2+2x-4y+7的值总不小于2,故选A.2、A【解析】

将抛物线向左平移2单位,再向上平移3个单位,根据抛物线的平移规律“左加右减,上加下减”可得新抛物线的解析式为,故选A.3、A【解析】

欲求证是否为直角三角形,这里给出三边的长,只要验证两短边的平方和是否等于最长边的平方即可.【详解】解:A.12+12=()2,能构成直角三角形,故符合题意;B.52+42≠62,不能构成直角三角形,故不符合题意;C.62+82≠112,不能构成直角三角形,故不符合题意;D.122+52≠152,不能构成直角三角形,故不符合题意.故选A.【点睛】本题考查了勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.4、B【解析】

根据正方形的性质可找出部分点An的坐标,根据坐标的变化即可找出A(2,2)(n为自然数),再根据2017=252×8+1,即可找出点A2019的坐标.【详解】观察发现:A(0,1)、A(1,1),A(2,0),A(2,−2),A(0,−4),A(−4,−4),A(−8,0),A(−8,8),A(0,16),A(16,16)…,∴A(2,2)(n为自然数).∵2017=252×8+1,∴A2017的坐标是(21008,﹣21008).故选B.【点睛】此题考查规律型:点的坐标,解题关键在于找到规律5、D【解析】

解:先移项,得x2-3x=0,再提公因式,得x(x-3)=0,从而得x=0或x=3故选D.【点睛】本题考查因式分解法解一元二次方程.6、B【解析】

把x=1代入方程x1-1ax+4=0,得到关于a的方程,解方程即可.【详解】∵x=1是方程x1-1ax+4=0的一个根,∴4-4a+4=0,解得a=1.故选B.【点睛】本题考查了一元二次方程的解的概念,解题时注意:使方程两边成立的未知数的值叫方程的解.7、A【解析】

根据高线的定义即可得出结论.【详解】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点睛】本题考查的是作图−基本作图,熟知三角形高线的定义是解答此题的关键.8、D【解析】

根据不等式的性质逐一进行分析判断即可得.【详解】∵,∴a+5>b+5,故A选项错误,5a>5b,故B选项错误,a-5>b-5,故C选项错误,,故D选项正确,故选D.【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.9、A【解析】

最简二次根式满足的条件是:被开方数不含能开方的因数或因式;被开方数不能是小数或分数;分母中不能出现二次根式.【详解】根据最简二次根式满足的条件可得:是最简二次根式,故选A.【点睛】本题主要考查最简二次根式的定义,解决本题的关键是要熟练掌握满足最简二次根式的条件.10、C【解析】试题分析:根据题意得:=13,4×ab=13﹣1=12,即2ab=12,则==13+12=25,故选C.考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.11、A【解析】

根据已知条件作出图像,连接BD,根据垂直平分线的性质可得BD=AD,可知两三角形的周长差为AB,结合条件可求出腰长,再由周长可求出BC,即可得出答案.【详解】如图,连接BD,∵D在线段AB的垂直平分线上,∴BD=AD,∴BD+DC+BC=AC+BC=38cm,且AB+AC+BC=60cm,∴AB=60-38=22cm,∴AC=22cm,∴BC=38-AC=38-22=16cm,即等腰三角形的腰为22cm,底为16cm,故选A.【点睛】此题主要考查垂直平分线的性质,解题的关键是正确作出辅助线再来解答.12、A【解析】试题分析:根据数形结合法的定义可知.解:由正比例函数y1=kx(k>0)与反比例函数y2=(m>0)图象相交于A、B两点,其横坐标分别是1和﹣1,然后结合图象可以看出x>1或﹣1<x<0时,y1>y2,所以不等式kx>的解集是x>1或﹣1<x<0”.解决此题时将解析式与图象紧密结合,所以解决此题利用的数学思想方法叫做数形结合法.故选A.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.二、填空题(每题4分,共24分)13、4【解析】

由正方形的对称性和矩形的性质可得结果.【详解】连接DE交FG于点O,由正方形的对称性及矩形的性质可得:∠ABE=∠ADF=∠OEF=∠OFE=15°,∴∠EOH=30°,∴BE=DE=2OE=4EH,∴=4.故答案为4.【点睛】本题考查了正方形的性质与矩形的性质,解答本题的关键是利用正方形的对称性求得∠ABE=∠ADF=∠OEF=∠OFE=15,进而利用RT△中30°所对的直角边等于斜边的一半解决问题.14、2【解析】试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,

∴a=-1.b=5,

∴a+b=-1+5=2.点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).15、甲【解析】

根据题目中的四个方差,可以比较它们的大小,由方差越小越稳定可以解答本题.【详解】解:∵0.57<0.59<0.62<0.67,

∴成绩最稳定的是甲,故答案为:甲【点睛】本题考查数据的波动。解答本题的关键是明确方差越小越稳定.16、2【解析】

如图,由△ABP的面积为4,知BP•AP=1.根据反比例函数中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【详解】如图解:∵△ABP的面积为BP•AP=4,

∴BP•AP=1,

∵P是AC的中点,

∴A点的纵坐标是B点纵坐标的2倍,

又∵点A、B都在双曲线(x>0)上,

∴B点的横坐标是A点横坐标的2倍,

∴OC=DP=BP,

∴k=OC•AC=BP•2AP=2.

故答案为:2.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题时一定要正确理解k的几何意义.17、()【解析】

根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.【详解】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),∵2÷4=503…1,∴点B2与B1同在一个象限内,∵-4=-22,8=23,16=24,∴点B2(22,-22).故答案为:(22,-22).【点睛】此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.18、m<【解析】当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2.故答案为m<1/2.三、解答题(共78分)19、(1)ADC(SSS),AC⊥BD;(2)四边形ABCD是菱形,见解析;(3)245,26【解析】

(1)根据作法和三角形全等的判定方法解答,再根据到线段两端点距离相等的点在线段的垂直平分线上可得AC⊥BD;(2)根据四条边都相等的四边形是菱形证明;(3)设点B到AD的距离为h,然后根据菱形的面积等于底边×高和菱形的面积等于对角线乘积的一半列方程求解即可;再根据正方形的面积公式和菱形的面积求解.【详解】(1)由图可知,AB=AD,CB=CD,在△ABC和△ADC中,AB=∴△ABC≌△ADC(SSS),∵AB=AD,∴点A在BD的垂直平分线上,∵CB=CD,∴点C在BD的垂直平分线上,∴AC垂直平分BD,∴AC⊥BD;(2)四边形ABCD是菱形.理由如下:由(1)可得AB=AD,CB=CD,∵AB=BC,∴AB=BC=CD=DA,∴四边形ABCD是菱形;(3)设点B到AD的距离为h,在菱形ABCD中,AC⊥BD,且AO=CO=4,BO=DO=3,在Rt△ADO中,AD=AO2+DS菱形ABCD=12AC•BD=AD•h即12×8×6=5h解得h=245设拼成的正方形的边长为a,则a2=12×8×6解得a=26cm.所以,点B到AD的距离是245cm,拼成的正方形的边长为26cm【点睛】本题考查了全等三角形的判定与性质,菱形的判定与性质,勾股定理,读懂题目信息,找出三角形全等的条件是解题的关键.20、(1)P(,2);(2)(,2)或(﹣,2)【解析】

(1)根据已知条件得到C(5,3),设直线OC的解析式为y=kx,求得直线OC的解析式为y=x,设P(m,m),根据S△POB=S矩形OBCD,列方程即可得到结论;(2)设点P的纵坐标为h,得到点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,于是得到结论.【详解】(1)如图:∵矩形OBCD中,OB=5,OD=3,∴C(5,3),设直线OC的解析式为y=kx,∴3=5k,∴k=,∴直线OC的解析式为y=x,∵点P在矩形的对角线OC上,∴设P(m,m),∵S△POB=S矩形OBCD,∴5×m=3×5,∴m=,∴P(,2);(2)∵S△POB=S矩形OBCD,∴设点P的纵坐标为h,∴h×5=5,∴h=2,∴点P在直线y=2或y=﹣2上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,∴4=5n,∴n=,∴直线OE的解析式为y=x,当y=2时,x=,∴P(,2),同理,点P在直线y=﹣2上,P(,﹣2),∴点P的坐标为(,2)或(﹣,2).【点睛】本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P在位置是解题的关键.21、6【解析】

由勾股定理可求AB的长,由折叠的性质可得AC=AE=6cm,∠DEB=90°,由勾股定理可求DE的长,由三角形的面积公式可求解.【详解】解:∵AC=6cm,BC=8cm,∴,∵将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,∴AC=AE=6cm,∠DEB=90°∴BE=10-6=4cm设CD=DE=x,则在Rt△DEB中,,解得:,即DE=3.∴△BDE的面积为:.【点睛】本题考查了翻折变换,勾股定理,三角形面积公式,熟练掌握折叠的性质是本题的关键.22、﹣1<x≤2,1.【解析】

先解不等式组,求出解集,再根据解集找出整数解.【详解】解不等式①,得:x≤2,解不等式4x﹣2<5x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的整数解的和为0+1+2=1.【点睛】本题考查了解一元一次不等式组及其整数解,注意各个不等式的解集的公共部分就是这个不等式组的解集.但本题是要求整数解的和,所以要找出在这范围内的整数.23、DE=2.5.【解析】

利用勾股定理列式求出AC,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵,∴,∵E是的中点,∴.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.24、(1)y=23t(0≤t≤3【解析】

(1)将点代入函数关系式,解得,有将代入,得,所以所求反比例函数关系式为;再将代入,得,所以所求正比例函数关系式为.(2)解不等式,解得,所以至少需要经过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论