蒙古准格尔旗2024届数学八年级下册期末质量跟踪监视试题含解析_第1页
蒙古准格尔旗2024届数学八年级下册期末质量跟踪监视试题含解析_第2页
蒙古准格尔旗2024届数学八年级下册期末质量跟踪监视试题含解析_第3页
蒙古准格尔旗2024届数学八年级下册期末质量跟踪监视试题含解析_第4页
蒙古准格尔旗2024届数学八年级下册期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

蒙古准格尔旗2024届数学八年级下册期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A.34cm B.30cm C.29cm D.17cm2.正方形在平面直角坐标系中,其中三个顶点的坐标分别为,,,则第四个顶点的坐标为()A. B. C. D.3.如图,中,与关于点成中心对称,连接,当()时,四边形为矩形.A. B.C. D.4.2022年将在北京---张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了滑雪选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:队员1队员2队员3队员4甲组176177175176乙组178175177174设两队队员身高的平均数依次为,,方差依次为,,则下列关系中完全正确的是().A. B.C. D.5.要得到函数y2x3的图象,只需将函数y2x的图象()A.向左平移3个单位 B.向右平移3个单位C.向下平移3个单位 D.向上平移3个单位6.一次函数y=kx+b,当k<0,b<0时,它的图象大致为()A. B. C. D.7.矩形各内角的平分线能围成一个()A.矩形 B.菱形 C.等腰梯形 D.正方形8.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15 B.C. D.9.已知正比例函数y=3x的图象经过点(1,m),则m的值为()A. B.3 C.﹣ D.﹣310.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.若关于x的方程+=3的解为正数,则m的取值范围是______.12.已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=6,CD=4,则EF=______.13.如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.14.在▱ABCD中,若∠A+∠C=270˚,则∠B=_____.15.函数中,自变量x的取值范围是_____.16.若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为______.17.如图所示,点A(﹣3,4)在一次函数y=﹣3x+b的图象上,该一次函数的图象与y轴的交点为B,那么△AOB的面积为_____.18.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为_______________.三、解答题(共66分)19.(10分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.20.(6分)已知一次函数y=kx+b的图象经过点(﹣1,﹣5)和(2,1),求一次函数的解析式.21.(6分)解方程:(1)=2+;(2).22.(8分)计算题:(1);(2)已知,,求代数式的值.23.(8分)求不等式组的正整数解.24.(8分)在▱ABCD中,AB=BC=9,∠BCD=120°.点M从点A出发沿射线AB方向移动.同时点N从点B出发,以相同的速度沿射线BC方向移动,连接AN,CM,直线AN、CM相交于点P.(1)如图甲,当点M、N分别在边AB、BC上时,①求证:AN=CM;②连接MN,当△BMN是直角三角形时,求AM的值.(2)当M、N分别在边AB、BC的延长线上时,在图乙中画出点P,并直接写出∠CPN的度数.25.(10分)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.26.(10分)如图,在中,,,点在延长线上,点在上,且,延长交于点,连接、.(1)求证:;(2)若,则__________.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.【详解】解:∵D、E分别为AB、BC的中点,

∴DE=AC=5,

同理,DF=BC=8,FE=AB=4,

∴△DEF的周长=4+5+8=17(cm),

故选D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.2、B【解析】

根据已知三个点的横纵坐标特征,可设A(-2,2),B(-2,-2),C(x,y),D(2,2),判断出AB⊥x轴,AD⊥AB,由此可得C点坐标与D点、B点坐标的关系,从而得到C点坐标.【详解】解:设A(-2,2),B(-2,-2),C(x,y),D(2,2),

由于A点和B点的横坐标相同,

∴AB垂直x轴,且AB=1.

因为A点和D点纵坐标相同,

∴AD∥x轴,且AD=1.

∴AD⊥AB,CD⊥AD.

∴C点的横坐标与D点的横坐标相同为2.

C点纵坐标与B点纵坐标相同为-2,

所以C点坐标为(2,-2).

故选:B.【点睛】本题主要考查了正方形的性质、坐标与图形的性质,解决这类问题要熟知两个点的横坐标相同,则两点连线垂直于x轴,纵坐标相同,则平行于x轴(垂直于y轴).3、C【解析】

由对称性质可先证得四边形AEFB是平行四边形,对角线相等的平行四边形是矩形,得到AF=BE,进而得到△BCA为等边三角形,得到角度为60°【详解】∵与关于点成中心对称∴AC=CF,BC=EC∴四边形AEFB是平行四边形当AF=BE时,即BC=AC,四边形AEFB是矩形又∵∴△BCA为等边三角形,故选C【点睛】本题主要考查平行四边形的性质与矩形的判定性质,解题关键在于能够证明出三角形BCA是等边三角形4、D【解析】首先求出平均数再进行吧比较,然后再根据法方差的公式计算.=,=,=,=所以=,<.故选A.“点睛”此题主要考查了平均数和方差的求法,正确记忆方差公式是解决问题的关键.5、D【解析】

平移后相当于x不变y增加了3个单位,由此可得出答案.【详解】解:由题意得x值不变y增加3个单位

应向上平移3个单位.

故选:D.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.6、B【解析】

根据一次函数的性质可得出结论.【详解】解:因为一次项系数则随的增大而减少,函数经过二,四象限;

常数项则函数一定经过三、四象限;

因而一次函数的图象一定经过第二、三、四象限.

故选B.【点睛】本题考查了一次函数的图像和性质,熟练掌握函数的性质是解题关键.7、D【解析】

根据矩形的性质及角平分线的性质进行分析即可.【详解】矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选D.【点睛】此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角8、D【解析】解:设走路线A时的平均速度为x千米/小时,根据题意得:﹣=.故选D.9、B【解析】

解:把点(1,m)代入y=3x,可得:m=3故选B10、B【解析】

可设2米的彩绳有x条,1米的彩绳有y条,根据题意可列出关于x,y的二元一次方程,为了不造成浪费,取x,y的非负整数解即可.【详解】解:设2米的彩绳有x条,1米的彩绳有y条,根据题意得2x+y=5,其非负整数解为:x=0y=5,故选:B【点睛】本题考查了二元一次方程的应用,二元一次方程的解有无数个,但在实际问题中应选择符合题意的解.正确理解题意是解题的关键.二、填空题(每小题3分,共24分)11、m<且m≠【解析】

去分母得:x+m-3m=3(x-3)去括号得x+m-3m=3x-9移项,整理得:x=∵x>0,且x≠3∴>0,且≠3解得:m<且m≠.12、【解析】

连接BD,利用勾股定理列式求出BD,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【详解】解:如图,连接BD,∵∠C=90°,BC=6,CD=4,∴BD===2,∵E、F分别为AB、AD的中点,∴EF是△ABD的中位线,∴EF=BD=×2=.故答案为:.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记定理是解题的关键,难点在于作辅助线构造出三角形.13、(a+b,c)【解析】

平行四边形的对边相等,B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,从而确定B点的坐标.【详解】∵四边形ABCO是平行四边形,∴AO=BC,AO∥BC,∴B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,∵O,A,C的坐标分别是(0,0),(a,0),(b,c),∴B点的坐标为(a+b,c).故答案是:(a+b,c).【点睛】本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.14、45°【解析】∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180º.∵∠A+∠C=270°,∴∠A=∠C=135º,∴∠B=180º-135º=45º.故答案为45º.15、x≠1【解析】

根据分母不等于0,可以求出x的范围;【详解】解:(1)x-1≠0,解得:x≠1;故答案是:x≠1,【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16、x<【解析】

根据对称的性质得出关于x轴对称的对称点的坐标,再根据待定系数法确定函数关系式y1=k1x+b1,同理得到y2=k2x+b2,然后求出不等式的解集即可.【详解】依题意得:直线l1:y1=k1x+b1经过点(0,1),(1,-1),则.解得.故直线l1:y1=x+1.同理,直线l2:y2=x-1.由k1x+b1>k2x+b2得到:x+1>x-1.解得x<.故答案是:x<.【点睛】此题主要考查了一次函数与一元一次不等式,一次函数图象与几何变换,根据题意求出直线解析式是解题的关键所在.17、【解析】

把点A(﹣3,4)代入y=﹣3x+b求出点B的坐标,然后得到OB=5,利用A的坐标即可求出△AOB的面积.【详解】解:∵点A(﹣3,4)在一次函数y=﹣3x+b的图象上,∴9+b=4,∴b=-5,∵一次函数图象与y轴的交点的纵坐标就是一次函数的常数项上的数,∴点B的坐标为:(0,-5),∴OB=5,而A(﹣3,4),S△AOB=.故答案为:.【点睛】本题考查了一次函数图像上点的坐标特征,一次函数与坐标轴的交点,以及三角形的面积,解决本题的关键是找到所求三角形面积的底边以及底边上的高的长度.18、x1+61=(10-x)1【解析】

根据题意画出图形,由题意则有AC=x,AB=10﹣x,BC=6,根据勾股定理即可列出关于x的方程.【详解】根据题意画出图形,折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC1+BC1=AB1,即x1+61=(10﹣x)1,故答案为x1+61=(10﹣x)1.【点睛】本题考查了勾股定理的应用,正确画出图形,熟练掌握勾股定理的内容是解题的关键.三、解答题(共66分)19、(1);(2)(3)见解析【解析】试题分析:(1)利用相似三角形的性质求得与的比值,依据和同高,则面积的比就是与的比值,据此即可求解;

(2)利用三角形的外角和定理证得可以证得,在直角中,利用勾股定理可以证得;

(3)连接易证是的中位线,然后根据是等腰直角三角形,易证利用相似三角形的对应边的比相等即可.试题解析:(1)∵,∴∵四边形ABCD是正方形,∴△CEF∽△ADF,∴,∴,∴;(2)证明:∵DE平分∠CDB,∴∠ODF=∠CDF,∵AC、BD是正方形ABCD的对角线.而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,∴∠ADF=∠AFD,∴AD=AF,在中,根据勾股定理得:AD==OA,(3)证明:连接OE.∵点O是正方形ABCD的对角线AC、BD的交点,点O是BD的中点.又∵点E是BC的中点,∴OE是△BCD的中位线,∴=,∴..在中,∵∠GCF=45°.∴CG=GF,又∵CD=BC,∴,∴=.∴CG=BG.20、y=2x﹣1【解析】

将点(1,5)和(1,1)代入可得出方程组,解出即可得出k和b的值,即得出了函数解析式.【详解】∵一次函数y=kx+b经过点(﹣1,﹣5)和(2,1),∴,解得:,∴这个一次函数的解析式为y=2x﹣1.【点睛】考查待定系数法求函数解析式,关键是要掌握待定系数法的步骤:(1)写出函数解析式的一般式,其中包括未知的系数;(2)把自变量与函数的对应值代入函数解析式中,得到关于待定系数的方程或方程组.(1)解方程(组)求出待定系数的值,从而写出函数解析式.这节课我们进一步研究二次函数解析式的求法..21、(1)x=0;(1)x=1.【解析】

(1)两边同时乘以x-1,化为整式方程,解整式方程后进行检验即可;(1)两边同时乘以3(x-3),化为整式方程,解整式方程后进行验根即可得.【详解】(1)两边同时乘以x-1,得:3x﹣5=1(x﹣1)﹣x﹣1,解得:x=0,检验:当x=0时,x-1≠0,所以x=0是分式方程的解;(1)两边同时乘以3(x-3),得1x﹣1=11x﹣11+x﹣3,解得:x=1,检验:当x=1时,3(x-3)≠0,所以x=1是分式方程的解.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般方法以及注意事项是解题的关键.解分式方程要进行验根.22、(1);(2)12.【解析】

(1)利用以及二次根式运算法则计算即可;(2)根据=计算即可.【详解】(1)=()=;(2)∵,,∴==.【点睛】本题主要考查了二次根式的化简计算,熟练掌握相关公式是解题关键.23、正整数解是1,2,3,1.【解析】

先分别求出每一个不等式的解集,然后根据不等式组解集的确定方法得到解集,即可得到正整数解.【详解】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,1.【点睛】本题考查了解一元一次不等式组,熟知一元一次不等式组的解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.24、(1)①见解析②3或6(2)120°【解析】

(1)①连接AC,先证△ABC是等边三角形得AB=CA=9、∠B=∠CAB=60°,由BN=AM证△ABN≌△CAM即可得;②分∠MNB=90°和∠NMB=90°两种情况,由∠B=60°得出另一个锐角为30°,根据直角三角形中30°角所对边等于斜边的一半及AM=BN求解可得;(2)根据题意作出图形,连接AC,先证△BAN≌△ACM得∠N=∠M,由∠NCP=∠MCB知∠CPN=∠CBM,根据AB∥CD、∠BCD=120°可得∠CPN=∠CBM=120°.【详解】(1)①如图1,连接AC,在▱ABCD中,AB∥DC,∴∠B=180°﹣∠BCD=180°﹣120°=60°,又∵AB=BC=9,∴△ABC是等边三角形,∴AB=CA=9,∠B=∠CAB=60°,又∵BN=AM,∴△ABN≌△CAM(SAS),∴AN=CM;②如图2,(Ⅰ)当∠MNB=90°时,∵∠B=60°,∴∠BMN=90°﹣60°=30°,∴BN=BM,又∵BN=AM,∴AM=(9﹣AM),∴AM=3;(Ⅱ)当∠NMB=90°时,∠BNM=90°﹣60°=30°,∴BM=BN,∴9﹣AM=AM,∴AM=6;综上所述,当△BMN是直角三角形时,AM的值为3或6;(2)如图3所示,点P即为所求;∠CPN=120°,连接AC,由(1)知△ABC是等边三角形,∴∠BAN=∠CAM=60°、AB=CA,又∵BN=AM,∴△BAN≌△ACM(SAS),∴∠N=∠M,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论