2024届吉林省长春市德惠市第十九中学八年级数学第二学期期末教学质量检测试题含解析_第1页
2024届吉林省长春市德惠市第十九中学八年级数学第二学期期末教学质量检测试题含解析_第2页
2024届吉林省长春市德惠市第十九中学八年级数学第二学期期末教学质量检测试题含解析_第3页
2024届吉林省长春市德惠市第十九中学八年级数学第二学期期末教学质量检测试题含解析_第4页
2024届吉林省长春市德惠市第十九中学八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省长春市德惠市第十九中学八年级数学第二学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值范围是()A.k>2 B.k<2 C.﹣1≤k≤2 D.﹣1≤k<22.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定3.不等式组的解集在数轴上可表示为()A. B. C. D.4.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.885.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是()A. B. C. D.6.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=177.下列运算错误的是()A. B. C. D.8.如图,A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,若,则S1+S2的值为()A.3 B.4 C.5 D.69.某百货商场试销一批新款衬衫,一周内销售情况如表所示。该商场经理想要了解哪种型号最畅销,那么他最关注的统计量是()型号383940414243数量(件)23313548298A.众数 B.中位数 C.平均数 D.方差10.如果解关于x的方程x-6x-5+1=mx-5(m为常数)时产生增根,那么A.﹣1 B.1 C.2 D.﹣2二、填空题(每小题3分,共24分)11.化简:______.12.如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:(1)k的值为______;(1)当x满足______时,y1>y1.13.计算:=_____.14.一次函数y=(2m﹣6)x+4中,y随x的增大而减小,则m的取值范围是_____.15.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为_____.16.函数y=-6x+8的图象,可以看作由直线y=-6x向_____平移_____个单位长度而得到.17.已知一组数据6,6,1,x,1,请你给正整数x一个值_____,使这组数据的众数为6,中位数为1.18.若关于x的一元二次方程x22x+m=0有实数根,则实数m的取值范围是______.三、解答题(共66分)19.(10分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.20.(6分)已知关于的一元二次方程,(1)求证:无论m为何值,方程总有两个不相等的实数根;(2)当m为何值时,该方程两个根的倒数之和等于1.21.(6分)如图,在由边长为1个单位的长度的小正方形组成的网格图中,已知点O及△ABC的顶点均为网格线的交点(1)在给定网格中,以O为位似中心,将△ABC放大为原来的三倍,得到请△A′B′C′,请画出△A′B′C′;(2)B′C′的长度为___单位长度,△A′B′C′的面积为___平方单位。22.(8分)已知:如图,在中,于点,为上一点,连结交于,且,,求证:.23.(8分)根据《佛山﹣环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线将串联起狮山、乐平、三水新城、水都基地、白坭等城镇节点,在这项工程中,有一段4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天.求甲、乙两个工程队平均每天各完成多少米?24.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy,ABC的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).(1)平移ABC,使得点A的对应点为A1(2,﹣1),点B,C的对应点分别为B1,C1,画出平移后的A1B1C1;(2)在(1)的基础上,画出A1B1C1绕原点O顺时针旋转90°得到的A2B2C2,其中点A1,B1,C1的对应点分别为A2,B2,C2,并直接写出点C2的坐标.25.(10分)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°,求∠B的度数.26.(10分)判断代数式的值能否等于-1?并说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.【详解】解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,∴k﹣2<1,k+1≥1解得:﹣1≤k<2,故选:D.【点睛】本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.2、A【解析】因为,,所以甲的成绩比乙的成绩稳定.3、D【解析】

先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.【详解】解不等式组可求得:不等式组的解集是,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.4、B【解析】

先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【详解】解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为90分,故选:B.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.6、C【解析】【分析】设游客人数的年平均增长率为x,由2015年约为12万人次,到2017年约为17万人次,增长了2次,可列出方程.【详解】设游客人数的年平均增长率为x,由2015年约为12万人次,到2017年约为17万人次,增长2次,可列出方程12(1+x)2=17.故选C【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程.7、C【解析】

根据二次根的运算法则对选项进行判断即可【详解】A.,所以本选项正确B.,所以本选项正确C.,不是同类二次根式,不能合并,故本选项错误D.,所以本选项正确故选C.【点睛】本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键8、B【解析】

首先根据反比例函数中k的几何意义,可知S矩形ACOD=S矩形BEOF=|k|=3,又S阴影=1,则S1=S矩形ACOD-S阴影=2,S2=S矩形BEOF-S阴影=2,从而求出S1+S2的值.【详解】解:∵A、B是曲线上的点,经过A、B两点向x轴、y轴作垂线段,

∴S矩形ACOD=S矩形BEOF=3,

又∵S阴影=1,

∴S1=S2=3-1=2,

∴S1+S2=1.

故选:B.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.9、A【解析】

平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对该品牌衬衫的尺码数销售情况作调查,那么应该关注那种尺码销的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选A.【点睛】本题考查了统计的有关知识,熟知平均数、中位数、众数、方差的意义是解决问题的关键.10、A【解析】

分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.【详解】方程两边都乘以x﹣5,得:x﹣6+x﹣5=m.∵方程有增根,∴x=5,将x=5代入x﹣6+x﹣5=m,得:m=﹣1.故选A.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.二、填空题(每小题3分,共24分)11、3【解析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.12、2;x<﹣2或0<x<2.【解析】

(2)将A点坐标分别代入两个解析式,可求k;(2)由两个解析式组成方程组,求出交点,通过图象可得解.【详解】(2)∵函数y2的图象与直线y2=x+2交于点A(2,a),∴a=2+2=2,∴A(2,2),∴2,∴k=2,故答案为:2;(2)∵函数y2的图象与直线y2=x+2相交,∴x+2,∴x2=2,x2=﹣2,∵y2>y2,∴x<﹣2或0<x<2,故答案为:x<﹣2或0<x<2.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.13、【解析】分析:应用完全平方公式,求出算式的值是多少即可.详解:=8﹣4+1=9﹣4.故答案为9﹣4.点睛:本题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.14、m<3.【解析】试题分析:∵一次函数y=(2m-6)x+5中,y随x的增大而减小,∴2m-6<0,解得,m<3.考点:一次函数图象与系数的关系.15、1【解析】

根据平行四边形的性质,三角形周长的定义即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=1,故答案为1.点睛:本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16、上1【解析】

根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.【详解】解:函数的图象是由直线向上平移1个单位长度得到的.故答案为:上,1.【点睛】本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.17、2【解析】

由数据1、1、6、6、x的众数为6、中位数为1知x<1且x≠1,据此可得正整数x的值.【详解】∵数据1、1、6、6、x的众数为6、中位数为1,

∴x<1且x≠1,

则x可取2、3、4均可,

故答案为2.【点睛】考查了中位数、众数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.18、m≤1【解析】

利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得,

解得.

故答案为:.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.三、解答题(共66分)19、详见解析【解析】

由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.【详解】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠EAF,∵∠1=∠1,∴∠EAF=∠1,∴AE∥CF,∴四边形AECF是平行四边形.【点睛】本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.20、(2)见解析(2)【解析】

(2)根据方程的系数结合根的判别式,可得出△=2m2+4>0,进而即可证出:方程总有两个不相等的实数根;

(2)利用根与系数的关系列式求得m的值即可.【详解】证明:△=(m+2)2-4×2×(m-2)=m2+2.

∵m2≥0,

∴m2+2>0,即△>0,

∴方程总有两个不相等的实数根.

(2)设方程的两根为a、b,

利用根与系数的关系得:a+b=-m-2,ab=m-2

根据题意得:=2,

即:=2

解得:m=-,

∴当m=-时该方程两个根的倒数之和等于2.【点睛】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.21、(1)如图所示;见解析;(2)35,9;【解析】

(1)利用位似图形的性质得出对应点坐标进而得出答案;(2)根据勾股定理和三角形的面积公式即可得到结论.【详解】(1)如图所示:△A′B′C′即为所求:(2)如图所示:B′C′的长度=32+62∵A′C′=3,∴△A′B′C′的面积为=12×3×6=9故答案为:35,9.【点睛】此题考查作图-位似变换,勾股定理和三角形的面积公式,解题关键在于掌握作图法则22、详见解析.【解析】

根据HL证明Rt△BDF≌Rt△ADC,进而解答即可.【详解】∵AD⊥BC,∴∠BDF=∠ADC=90°.在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC.又∵∠BFD=∠AFE,∴∠AEF=∠BDF=90°,∴BE⊥AC.【点睛】本题考查了全等三角形的判定和性质,关键是根据HL证明Rt△BDF≌Rt△ADC.23、甲工程队平均每天完成1米,乙工程队平均每天完成100米.【解析】

设乙工程队平均每天完成x米,则甲工程队平均每天完成2x米,根据工作时间=总工作量÷工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设乙工程队平均每天完成x米,则甲工程队平均每天完成2x米,根据题意得:,解得:x=100,经检验,x=100是原分式方程的解,且符合题意,∴2x=1.答:甲工程队平均每天完成1米,乙工程队平均每天完成100米.【点睛】本题考查了分式方程的应用,找准等量关系,正确

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论