版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山市东坡区东坡区东坡中学2024年数学八年级下册期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若,则不等式的解集在数轴上表示为()A. B.C. D.2.下列二次根式中,最简二次根式是()A. B. C. D.3.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB4.已知函数y=2x+k-1的图象经过第一、三、四象限,则k的值可以是()A.3 B.2 C.1 D.05.平行四边形一边长12,那么它的两条对角线的长度可能是()A.8和16 B.10和16 C.8和14 D.8和126.下列图象能表示一次函数的是()A. B. C. D.7.若二次函数的图象经过点P(-2,4),则该图象必经过点()A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)8.不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB=CD,AD=BCC.AB=CD,AB∥CD D.AB=CD,AD∥BC9.八边形的内角和为()A.180° B.360° C.1080° D.1440°10.若二次根式有意义,则的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.12.函数y=中,自变量x的取值范围是______.13.若是的小数部分,则的值是__________.14.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为________________.15.已知正n边形的每一个内角为150°,则n=_____.16.已知,,则__________.17.如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为________.18.函数y=-x,在x=10时的函数值是______.三、解答题(共66分)19.(10分)如图,AD=CB,AB=CD,求证:△ACB≌△CAD20.(6分)某校在一次广播操比赛中,初二(1)班、初二(2)班、初二(3)班的各项得分如下:服装统一动作整齐动作准确初二(1)班初二(2)班初二(3)班(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班.(2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?21.(6分)如图,在中,,,,点为边上的一个动点,点从点出发,沿边向运动,当运动到点时停止,设点运动的时间为秒,点运动的速度为每秒1个单位长度.(1)当时,求的长;(2)求当为何值时,线段最短?22.(8分)某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?23.(8分)如图,E、F是矩形ABCD边BC上的两点,AF=DE.(1)求证:BE=CF;(2)若∠1=∠2=30°,AB=5,FC=2,求矩形ABCD的面积(结果保留根号).24.(8分)树叶有关的问题如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:表1A树、B树、C树树叶的长宽比统计表12345678910A树树叶的长宽比4.04.95.24.15.78.57.96.37.77.9B树树叶的长宽比2.52.42.22.32.01.92.32.01.92.0C树树叶的长宽比1.11.21.20.91.01.01.10.91.01.3表1A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表平均数中位数众数方差A树树叶的长宽比6.26.07.92.5B树树叶的长宽比2.20.38C树树叶的长宽比1.11.11.00.02A树、B树、C树树叶的长随变化的情况解决下列问题:(1)将表2补充完整;(2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;(3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。25.(10分)如图,在平面直角坐标系中,直线:经过,分别交轴、直线、轴于点、、,已知.(1)求直线的解析式;(2)直线分别交直线于点、交直线于点,若点在点的右边,说明满足的条件.26.(10分)某市某水果批发市场某批发商原计划以每千克10元的单价对外批发销售某种水果.为了加快销售,该批发商对价格进行两次下调后,售价降为每千克6.4元.(1)求平均每次下调的百分率;(2)某大型超市准备到该批发商处购买2吨该水果,因数量较多,该批发商决定再给予两种优惠方案以供选择.方案一:打八折销售;方案二:不打折,每吨优惠现金1000元.试问超市采购员选择哪种方案更优惠?请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
先根据非负性求出a,b的值,再求出不等式的解集即可.【详解】根据题意,可知,,解得,,∴则不等式的解集为.在数轴上表示为:故选C.【点睛】此题只要不等式的求解,解题的关键是熟知非负性的应用及不等式的求解.2、B【解析】
化简得到结果,即可做出判断.【详解】解:A、=,不是最简二次根式;
B、是最简二次根式;
C、=7,不是最简二次根式;
D、=,不是最简二次根式;
故选:B.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.3、B【解析】
根据平行四边形的判定方法一一判断即可;【详解】解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;故选:B.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、D【解析】
由一次函数图象经过的象限可得出k-1<0,解之可得出k的取值范围,再对照四个选项即可得出结论.【详解】∵函数y=2x+k-1的图象经过第一、三、四象限,∴k-1<0,解得:k<1.故选D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.5、B【解析】
根据平行四边形的对角线互相平分,利用三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【详解】A、两对角线的一半分别为4、8,∵4+8=12,∴不能组成三角形,故本选项错误;B、两对角线的一半分别为5、8,∵5+8>12,∴能组成三角形,故本选项正确;C、两对角线的一半分别为4、7,∵4+7=11<12,∴不能组成三角形,故本选项错误;D、两对角线的一半分别为4、6,∵4+6=10<12,∴不能组成三角形,故本选项错误,故选B.【点睛】本题考查了平行四边形的对角线互相平分的性质,三角形的三边关系,利用两对角线的一半与边长能否构成三角形判定是解题的关键.6、D【解析】
将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.【详解】y=k(x-1)=kx-k,
当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;
当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;
故选:D.【点睛】考查了一次函数的性质,解题的关键是能够分类讨论.7、A【解析】根据点在曲线上,点的坐标满足方程的关系,将P(-2,4)代入,得,∴二次函数解析式为.∴所给四点中,只有(2,4)满足.故选A.8、D【解析】
A、B、C都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【详解】解:根据平行四边形的判定:A、B、C可判定为平行四边形,而C不具备平行四边形的条件,A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),满足;B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形),满足;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),满足;D、∵AB=CD,AD∥BC,∴四边形ABCD是等腰梯形,不一定是平行四边形,不满足;
故选:D.【点睛】本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.9、C【解析】试题分析:根据n边形的内角和公式(n-2)×180º可得八边形的内角和为(8-2)×180º=1080º,故答案选C.考点:n边形的内角和公式.10、C【解析】试题分析:由题意得,,解得.故选C.考点:二次根式有意义的条件.二、填空题(每小题3分,共24分)11、1【解析】
由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.【详解】解:,,四边形是平行四边形,,同理可得:,,,四边形面积四边形面积(四边形面积四边形面积),故答案为:1.【点睛】本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.12、x≠1【解析】
根据分母不能为零,可得答案.【详解】解:由题意,得x-1≠0,解得x≠1,故答案为:x≠1.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.13、1【解析】
先估计的近似值,再求得m,代入计算即可.【详解】∵是的小数部分∴m=-1把m代入得故答案为1.【点睛】此题主要考查了代数式,熟练掌握无理数是解题的关键.14、1.【解析】
∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=1,CE=BC−BE=6−2=1,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=1,故答案为1.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.15、1【解析】试题解析:由题意可得:解得故多边形是1边形.故答案为1.16、1【解析】
把x与y代入计算即可求出xy的值【详解】解:当,时,∴;故答案为:1.【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.17、【解析】
由四边形ABCD为菱形性质得DC∥AB,则同旁内角互补,得∠CDE+∠DEB=180°,结合DE⊥AB,则DE⊥DC,已知∠DCE=30°,设DE=x,用勾股定理把DC、AD、和DE用含x的代数式表示,在Rt△AED中,利用勾股列关系式求得x=,则.【详解】解:∵四边形ABCD为菱形,∴DC∥AB,∴∠CDE+∠DEB=180°,∵DE⊥AB,∴DE⊥DC,∵∠DCE=30°,设DE=x,则EC=2x,
,∴AD=DC=,在Rt△AED中,有AD2=DE2+AE2,解得x=,,故答案为:.【点睛】本题考查菱形的基本性质,能够灵活运用勾股定理是本题关键.18、-1【解析】
将函数的自变量的值代入函数解析式计算即可得解.【详解】解:当时,y=-=-=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征,准确计算即可,比较简单.三、解答题(共66分)19、见解析【解析】
利用SSS即可证明.【详解】证明:在△ACB与△CAD中∴△ACB≌△CAD(SSS)【点睛】本题考查的是全等三角形的判定,能够根据SSS证明三角形全等是解题的关键.20、(1)89分,78分,初二(1);(2)排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析【解析】
(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;
(2)利用加权平均数分别计算三个班的得分后即可排序;
(3)根据成绩提出提高成绩的合理意见即可;【详解】(1)服装统一方面的平均分为:=89分;
动作整齐方面的众数为78分;
动作准确方面最有优势的是初二(1)班;
(2)∵初二(1)班的平均分为:=84.7分;
初二(2)班的平均分为:=82.8分;
初二(3)班的平均分为:=83.9;
∴排名最好的是初二一班,最差的是初二(2)班;
(3)加强动作整齐方面的训练,才是提高成绩的基础.【点睛】考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.21、(1)8;(2)t=.【解析】
(1)根据勾股定理即可得到结论;(2)根据相似三角形的判定和性质定理即可得到结论.【详解】(1)在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∴AC10,当t=2时,AD=2,∴CD=8;(2)当BD⊥AC时,BD最短.∵BD⊥AC,∴∠ADB=∠ABC=90°.∵∠A=∠A,∴△ABC∽△ADB,∴,∴,∴AD,∴t,∴当t为时,线段BD最短.【点睛】本题考查了勾股定理,垂线段最短,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.22、(1)①当x≤8000时,y=0;②当8000<x≤30000时,y=0.5x﹣4000;③当30000<x≤50000时,y=0.6x﹣7000;(2)1元.【解析】
(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.【详解】解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为:y=11000+20000×60%=23000(元),故花费小于5万元,故把y=20000代入y=0.6x﹣7000中得:20000=0.6x﹣7000,解得:x=1.答:他住院医疗费用是1元.【点睛】本题考查一次函数的应用;分段函数.23、(1)见解析;(2)【解析】
(1)首先证明Rt△ABF≌Rt△DCE,从而可得到BF=CE,然后由等式的性质进行证明即可;
(2)先依据含30°直角三角形的性质求得AF的长,然后依据勾股定理求得BF的长,从而可求得BC的长,最后,依据矩形的面积公式求解即可.【详解】解:(1)∵矩形ABCD中∠B=∠C=90°,AB=CD.
又∵AF=DE
∴Rt△ABF≌Rt△DCE(HL),
∴BF=CE.
∴BF-EF=CE-EF,即BE=CF;
(2)∵Rt△ABF中,∠2=30°,
∴AF=2AB=1.
∴BF=,∴BC=BF+FC=,∴矩形ABCD的面积=AB•BC=5()=【点睛】本题主要考查的是矩形的性质、全等三角形的性质和判定、勾股定理的应用,熟练掌握相关知识是解题的关键.24、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;【解析】
(1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;(2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;(3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.【详解】解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论