福建省南安市柳城义务教育小片区2024年数学八年级下册期末达标检测试题含解析_第1页
福建省南安市柳城义务教育小片区2024年数学八年级下册期末达标检测试题含解析_第2页
福建省南安市柳城义务教育小片区2024年数学八年级下册期末达标检测试题含解析_第3页
福建省南安市柳城义务教育小片区2024年数学八年级下册期末达标检测试题含解析_第4页
福建省南安市柳城义务教育小片区2024年数学八年级下册期末达标检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省南安市柳城义务教育小片区2024年数学八年级下册期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知,那么下列式子中一定成立的是()A. B. C. D.2.若菱形的周长为16,高为2,则菱形两个邻角的比为()A.6:1 B.5:1 C.4:1 D.3:13.下列图形中,是中心对称图形的是()A. B. C. D.4.在某学校汉字听写大赛中,有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的(

)A.中位数 B.平均数 C.众数 D.方差5.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.486.如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.7.△ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.∠A:∠B:∠C=3∶4∶5 B.∠A=∠B+∠CC.a2=(b+c)(b-c) D.a:b:c=1∶2∶8.下列各式中,最简二次根式是()A. B. C. D.9.如图,在正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于点G,连接AG、HG.下列结论:①CE⊥DF;②AG=DG;③∠CHG=∠DAG.其中,正确的结论有()A.0个 B.1个 C.2个 D.3个10.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是(

)A.四边形ABCD由矩形变为平行四边形

B.BD的长度增大C.四边形ABCD的面积不变 D.四边形ABCD的周长不变二、填空题(每小题3分,共24分)11.若x1,x2是方程x2+x−1=0的两个根,则x12+x22=____________.12.函数y=2x-3的图象向下平移3个单位,所得新图象的函数表达式是___________.13.若3,4,a和5,b,13是两组勾股数,则a+b的值是________.14.在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.15.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________.16.将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_____.17.函数y=中,自变量x的取值范围是______.18.已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y=的图象上,则m的值为________.三、解答题(共66分)19.(10分)如图,在平行四边形中,,,分别是,的中点,.(1)求证:四边形是菱形;(2)求的长.20.(6分)如图,已知是的中线,且求证:若,试求和的长21.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;②以原点O为对称中心,再画出与△ABC关于原点对称的△A2B2C2,并写出点C2的坐标.22.(8分)如图,直线y=x+与x轴相交于点B,与y轴相交于点A.(1)求∠ABO的度数;(2)过点A的直线l交x轴的正半轴于点C,且AB=AC,求直线的函数解析式.23.(8分)先化简,然后从中选择所有合适的整数作为的值分别代入求值.24.(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).(1)求一次函数和反比例函数解析式.(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.(3)根据图象,直接写出不等式的解集.25.(10分)在所给的网格中,每个小正方形的网格边长都为1,按要求画出四边形,使它的四个顶点都在小正方形的顶点上.(1)在网格1中画出面积为20的菱形(非正方形);(2)在网格2中画出以线段为对角线、面积是24的矩形;直接写出矩形的周长.26.(10分)如图,点为平面直角坐标系的原点,点在轴的正半轴上,正方形的边长是3,点在上,且.将绕着点逆时针旋转得到.(1)求证:;(2)在轴上找一点,使得的值最小,求出点的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据比例的性质对各个选项进行判断即可.【详解】A.∵,∴3x=2y,∴不成立,故A不正确;B.∵,∴3x=2y,∴不成立,故B不正确;C.∵,∴y,∴不成立,故C不正确;D.∵,∴,∴成立,故D正确;故选D.【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键.更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.2、B【解析】

由锐角函数可求∠B的度数,可求∠DAB的度数,即可求解.【详解】如图,∵四边形ABCD是菱形,菱形的周长为16,∴AB=BC=CD=DA=4,∵AE=2,AE⊥BC,∴sin∠B=∴∠B=30°∵四边形ABCD是菱形,∴AD∥BC,∴∠DAB+∠B=180°,∴∠DAB=150°,∴菱形两邻角的度数比为150°:30°=5:1,故选:B.【点睛】本题考查了菱形的性质,锐角三角函数,能求出∠B的度数是解决问题的关键.3、D【解析】

根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;

B、不是中心对称图形,故此选项错误;

C、不是中心对称图形,故此选项错误;

D、是中心对称图形,故此选项正确;

故选:D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.4、A【解析】

可知一共有21名同学参赛,要取前10名,因此只需知道这组数据的中位数即可.【详解】解:∵有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,∴小颖是否能进入决赛,将21名同学的成绩从小到大排列,可知第11名同学的成绩是这组数据的中位数,∴小颖要知道这组数据的中位数,就可知道自己是否进入决赛.故答案为:A【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、A【解析】分析:由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.详解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,则AB==5,故这个菱形的周长L=4AB=1.故选A.点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.6、C【解析】

写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.【点睛】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.7、A【解析】分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正确;根据平方差公式,化简原式为a2=b2-c2,即a2+c2=b2,根据勾股定理的逆定理,可知是直角三角形,故不正确;根据a、b、c的关系,可直接设a=x,b=2x,c=x,可知a2+c2=b2,可以构成直角三角形,故不正确.故选A.点睛:此题主要考查了直角三角形的判定,关键是根据三角形的两锐角互余,三角形的内角和定理和勾股定理逆定理进行判断即可.8、C【解析】

根据最简二次根式的定义逐个判断即可.最简二次根式满足两个条件,一是被开方式不含能开的尽方的因式,二是被开方式不含分母.【详解】A、=,不是最简二次根式,故本选项不符合题意;B、=2,不是最简二次根式,故本选项不符合题意;C、是最简二次根式,故本选项符合题意;D、=2,不是最简二次根式,故本选项不符合题意;故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.9、C【解析】

连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=DC,∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E.F.H分别是AB、BC、CD的中点,∴BE=FC∴△BCE≌△CDF,∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;连接AH,同理可得:AH⊥DF,∵CE⊥DF,∴△CGD为直角三角形,∴HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD=DC,

在Rt△CGD中,DG≠DC,∴AG≠DG,故②错误;∵AG=AD,AH垂直平分DG∴∠DAG=2∠DAH,根据①,同理可证△ADH≌△DCF∴∠DAH=∠CDF,∴∠DAG=2∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠GHC=∠DAG,故③正确,所以①和③正确选择C.【点睛】本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明△BCE≌△CDF,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC,而DG≠DC,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF即可.10、C【解析】试题分析:由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.二、填空题(每小题3分,共24分)11、3【解析】

先根据根与系数的关系求出x1+x2和x1•x2的值,再利用完全平方公式对所求代数式变形,然后把x1+x2和x1•x2的值整体代入计算即可.【详解】∵x1,x2是方程x2+x−1=0的两个根,

∴x1+x2=−=−=−1,x1•x2===−1,

∴x12+x22=(x1+x2)2−2x1⋅x2=(−1)2−2×(−1)=1+2=3.

故答案是:3.【点睛】本题考查根与系数的关系,解题的关键是掌握根与系数的关系.12、y=2x-6【解析】

根据“左加右减,上加下减”的原则进行解答即可.【详解】解:函数y=2x-3的图像向下平移3个单位,所得新图像的函数表达式是y=2x-6.故答案为y=2x-6.【点睛】本题主要考查一次函数图象的平移,解此题的关键在于熟记“左加右减,上加下减”.13、1【解析】解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=1.故答案为:1.14、3或1.【解析】

由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是D,A,C在同一条直线上,可分别求出CP的长度.【详解】解:∵AC=BC=10,

∴∠CAB=∠CBA,

由旋转的性质知,△ACB≌△AED,

∴AE=AC=10,∠CAB=∠EAD=∠CBA,

①∵∠DAF=∠CBA,

∴∠DAF=∠EAD,

∴A,F,E三点在同一直线上,如图1所示,

过点C作CH⊥AB于H,

则AH=BH=AB=7,

∵EP⊥AC,

∴∠EPA=∠CHA=90°,

又∵∠CAH=∠EAP,CA=EA,

∴△CAH≌△EAP(AAS),

∴AP=AH=7,

∴PC=AC-AP=10-7=3;

②当D,A,C在同一条直线上时,如图2,

∠DAF=∠CAB=∠CBA,

此时AP=AD=AB=7,

∴PC=AC+AP=10+7=1.

故答案为:3或1.【点睛】本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.15、7【解析】

试题分析:根据题意得,等腰△ABC中,OA=OB=3,由等腰三角形的性质可得OC⊥AB,根据勾股定理可得OC=7,又因OM=OC=7,于是可确定点M对应的数为7.考点:勾股定理;实数与数轴.16、y=-2x+1【解析】根据上下平移时只需让b的值加减即可,进而得出答案即可.解:原直线的k=-2,b=0;向上平移1个单位得到了新直线,

那么新直线的k=-2,b=0+1=1.

故新直线的解析式为:y=-2x+1.

故答案为y=-2x+1.“点睛”此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.17、x≠1【解析】

根据分母不能为零,可得答案.【详解】解:由题意,得x-1≠0,解得x≠1,故答案为:x≠1.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.18、【解析】

根据中点的坐标和平移的规律,利用点在函数图像上,可解出m的值.【详解】△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,3)∴AB的中点(-1,2),BC的中点(-2,0),AC的中点(-2,-1)∴AB边的中点平移后为(-1+m,2),AC中点平移后为(-2+m,-1)∵△ABC某一边中点落在反比例函数上∴2(-1+m)=3或-1×(-2+m)=3m=2.5或-1(舍去).故答案是:.【点睛】考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(共66分)19、(1)见解析;(2)【解析】

(1)由平行四边形的性质得出AD∥BC,AD=BC,证出DE∥CF,DE=CF,得出四边形CDEF是平行四边形,证出CD=CF,即可得出四边形CDEF是菱形;

(2)连接DF,证明△CDF是等边三角形,得出∠CDF=∠CFD=60°,求出∠BDF=30°,证出∠BDC=∠BDF+∠CDF=90°,由勾股定理即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,

∵E,F分别是AD,BC的中点,

∴DE=AD,CF=BC,

∴DE∥CF,DE=CF,

∴四边形CDEF是平行四边形,

又∵BC=2CD,

∴CD=CF,

∴四边形CDEF是菱形;(2)如图,连接,,,是等边三角形,,,.是的中点,,.,.,.【点睛】本题考查的是菱形的判定与性质、平行四边形的判定和性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.20、(1)见解析;(2)【解析】

(1)通过利用等角的补角相等得到,又已知,即可得证(2)AD为中线,得到DC=4,又易证,利用比例式求出AC,再由(1)得到,列出比例式可得到AD【详解】证明:解:是的中线由得【点睛】本题主要考查相似三角形的判定与性质,第二问的关键在于找到相似三角形,利用对应边成比例求出线段21、①见解析;②见解析,点C2坐标为(﹣4,1).【解析】

①根据平移规律得出对应点位置即可;②利用关于原点对称点的坐标性质得出对应点位置进而得出答案.【详解】①如图所示,△A1B1C1即为所求.②如图所示,△A2B2C2即为所求,点C2坐标为(﹣4,1).【点睛】此题主要考查了平移变换以及旋转变换和三角形面积等知识,根据题意得出对应点位置是解题关键.22、(1)∠ABO=60°;(2)【解析】

(1)根据函数解析式求出点A、B的坐标,然后在Rt△ABO中,利用三角函数求出tan∠ABO的值,继而可求出∠ABO的度数;(2)根据题意可得,AB=AC,AO⊥BC,可得AO为BC的中垂线,根据点B的坐标,得出点C的坐标,然后利用待定系数法求出直线l的函数解析式.【详解】解:(1)对于直线y=x+,令x=0,则y=,令y=0,则x=﹣1,故点A的坐标为(0,),点B的坐标为(﹣1,0),则AO=,BO=1,在Rt△ABO中,∵tan∠ABO=,∴∠ABO=60°;(2)在△ABC中,∵AB=AC,AO⊥BC,∴AO为BC的中垂线,即BO=CO,则C点的坐标为(1,0),设直线l的解析式为:y=kx+b(k,b为常数),则,解得:,即函数解析式为:y=﹣x+.【点睛】本题考查了待定系数法求一次函数解析式,涉及了的知识点有:待定系数法确定一次函数解析式,一次函数与坐标轴的交点,坐标与图形性质,熟练掌握待定系数法是解答本题的关键.23、,.【解析】

将原式括号内两项通分并利用同分母分式的减法法则计算,再将除法运算化为乘法运算,约分后得到最简结果,然后从已知不等式解集中找出合适的整数解代入化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论