版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江杭州西湖区2024年数学八年级下册期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是()A.x>3 B.x<3 C.x>5 D.x<52.如图.在正方形中,为边的中点,为上的一个动点,则的最小值是()A. B. C. D.3.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()A.16(1+2x)=25B.25(1-2x)=16C.25(1-x)²=16D.16(1+x)²=254.如果与最简二次根式是同类二次根式,则的值是()A. B. C. D.5.如图正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1 B.2 C.3 D.46.五一小长假,李军与张明相约去宁波旅游,李军从温岭北上沿海高速,同时张明从玉环芦浦上沿海高速,温岭北与玉环芦浦相距44千米,两人约好在三门服务区集合,李军由于离三门近,行驶了1.2小时先到达三门服务站等候张明,张明走了1.4小时到达三门服务站。在整个过程中,两人均保持各自的速度匀速行驶,两人相距的路程y千米与张明行驶的时间x小时的关系如图所示,下列说法错误的是(
)A.李军的速度是80千米/小时B.张明的速度是100千米/小时C.玉环芦浦至三门服务站的路程是140千米D.温岭北至三门服务站的路程是44千米7.已知,若当时,函数的最大值与最小值之差是1,则a的值为()A. B. C.2 D.38.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图 B.扇形统计图C.折线统计图 D.频数分布统计图9.下列命题的逆命题是真命题的是()A.对顶角相等 B.全等三角形的面积相等C.两直线平行,内错角相等 D.等边三角形是等腰三角形10.直角三角形的三边为a、b、c,其中a、b两边满足,那么这个三角形的第三边c的取值范围为()A.c>6 B.6<c<8 C.2<c<14 D.c<8二、填空题(每小题3分,共24分)11.如果一组数据2,4,,3,5的众数是4,那么该组数据的中位数是___.12.当0<m<3时,一元二次方程x2+mx+m=0的根的情况是_______.13.如图,在中,角是边上的一点,作垂直,垂直,垂足分别为,则的最小值是______.14.在直角三角形中,若勾为1,股为1.则弦为________.15.在平面直角坐标系xOy中,已知抛物线的顶点在轴上,P,Q()是此抛物线上的两点.若存在实数,使得,且成立,则的取值范围是__________.16.一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.17.已知a+b=3,ab=﹣4,则a2b+ab2的值为_____.18.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是_______小时.三、解答题(共66分)19.(10分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(1)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A1B1C1D1.20.(6分)小强想利用树影测树高,他在某一时刻测得直立的标杆长0.8m,其影长为1m,同时测树影时因树靠近某建筑物,影子不全落在地上,有一部分落在墙上如图,若此时树在地面上的影长为5.5m,在墙上的影长为1.5m,求树高21.(6分)如图,已知∠BAC=60°,∠B=80°,DE垂直平分AC交BC于点D,交AC于点E.(1)求∠BAD的度数;(2)若AB=10,BC=12,求△ABD的周长.22.(8分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,求线段EC,CH的长.23.(8分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120∘,∠B=∠ADC=90°.E、F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_________;探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55海里/小时的速度前进,舰艇乙沿北偏东50°的方向以75海里/小时的速度前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.24.(8分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.25.(10分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为_____.26.(10分)在平面直角坐标系xOy中,直线与x轴交于点A,与过点B(0,2)且平行于x轴的直线l交于点C,点A关于直线l的对称点为点D.(1)求点C、D的坐标;(2)将直线在直线l上方的部分和线段CD记为一个新的图象G.若直线与图象G有两个公共点,结合函数图象,求b的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
由图象可知:A(1,0),且当x<1时,y>0,即可得到不等式kx+b>0的解集是x<1,即可得出选项.【详解】解:∵一次函数y=kx+b的图象经过A、B两点,由图象可知:A(1,0),根据图象当x<1时,y>0,即:不等式kx+b>0的解集是x<1.故选:D.【点睛】此题考查一次函数与一元一次不等式,解题关键在于结合函数图象2、A【解析】
根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.【详解】解:四边形为正方形关于的对称点为.连结交于点,如图:此时的值最小,即为的长.∵为中点,BC=4,∴BE=2,∴.故选:A.【点睛】本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.3、C【解析】解:第一次降价后的价格为:15×(1﹣x),第二次降价后的价格为:15×(1﹣x)1.∵两次降价后的价格为2元,∴15(1﹣x)1=2.故选C.4、B【解析】
根据同类二次根式的定义得出5+a=3,求出即可.【详解】∵与最简二次根式是同类二次根式,,∴5+a=3,解得:a=﹣1.故选B.【点睛】本题考查了同类二次根式和最简二次根式,能根据同类二次根式的定义得出5+a=3是解答此题的关键.5、D【解析】
由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,
则可判断各命题是否正确.【详解】∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°
∵△AEF是等边三角形
∴AE=AF=EF,∠EAF=∠AEF=60°
∵AD=AB,AF=AE
∴△ABF≌△ADE
∴BF=DE
∴BC-BF=CD-DE
∴CE=CF
故①正确
∵CE=CF,∠C=90°
∴EF=CE,∠CEF=45°
∴AF=CE,
∵∠AED=180°-∠CEF-∠AEF
∴∠AED=75°
故②③正确
∵AE=AF,CE=CF
∴AC垂直平分EF
故④正确
故选D.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.6、D【解析】
利用函数图像,可知1.2小时张明走了20千米,利用路程÷时间=速度,就可求出张明的速度,从而可求出李军的速度,可对A,B作出判断;再利用路程=速度×时间,就可求出玉环芦浦至三门服务站的路程和温岭北至三门服务站的路程,可对C,D作出判断.【详解】解:∵1.2小时,他们两人相距20千米,张明走了1.4小时到达三门服务站,即两人相距路程为0千米,∴张明的速度为:20÷(1.4-1.2)=100千米/时,故B正确;李军的速度为:100-(44-20)÷1.2=100-20=80千米/时,故A正确;∴玉环芦浦至三门服务站的路程为100×1.4=140千米。故C正确;∴温岭北至三门服务站的路程为1.2×80=96千米,故D错误;故答案为:D.【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.7、C【解析】
根据反比例函数的性质和题意,利用分类讨论的数学思想可以求得a的值,本题得以解决.【详解】解:当时,函数中在每个象限内,y随x的增大而增大,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=-2(舍去),当a>0时,函数中在每个象限内,y随x的增大而减小,∵当1≤x≤2时,函数的最大值与最小值之差是1,∴,得a=2,故选择:C.【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质和分类讨论的数学思想解答.8、C【解析】根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.9、C【解析】
先分别写出各命题的逆命题,再根据对顶角的概念,全等三角形的判定,平行线的判定以及等腰三角形和等边三角形的关系分别判断即可得解.【详解】A、逆命题为:相等的两个角是对顶角,是假命题,故本选项错误;B、逆命题为:面积相等的两个三角形是全等三角形,是假命题,故本选项错误;C、逆命题为:内错角相等,两直线平行,是真命题,故本选项正确;D、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误.故选C.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、C【解析】
根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.【详解】由题意得,a−12a+36=0,b−8=0,解得a=6,b=8,∵8−6=2,8+6=14,∴2<c<14.故选C.【点睛】此题考查三角形三边关系,解题关键在于据非负数的性质列式求出a、b二、填空题(每小题3分,共24分)11、1【解析】
根据众数为1,可得x等于1,然后根据中位数的概念,求解即可.【详解】解:因为这组数据的众数是1,
∴x=1,
则数据为2、3、1、1、5,
所至这组数据的中位数为1,
故答案为:1.【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12、无实数根【解析】
根据一元二次方程根的判别式判断即可【详解】一元二次方程x2+mx+m=0,则△=m2-4m=(m-2)2-4,当0<m<3时,△<0,故无实数根【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.13、【解析】
根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,四边形AFPE是矩形,要使EF最小,只要AP最小即可,过点A作于P,此时AP最小,在直角三角形中,由勾股定理得:BC=5,由三角形面积公式得:,即,故答案为:.【点睛】本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.14、【解析】
根据勾股定理计算即可.【详解】解:由勾股定理得,弦=,故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.15、【解析】
由抛物线顶点在x轴上,可得函数可以化成,即可化成完全平方公式,可得出,原函数可化为,将带入可解得的值用m表示,再将,且转化成PQ的长度比与之间的距离大可得出只含有m的不等式即可求解.【详解】解:∵抛物线顶点在x轴上,∴函数可化为的形式,即可化成完全平方公式∴可得:,∴;令,可得,由题可知,解得:;∴线段PQ的长度为,∵,且,∴,∴,解得:;故答案为【点睛】本题考查特殊二次函数解析式的特点,可以利用公式法求得a、b之间的关系,也可以利用顶点在x轴上的函数解析式的特点来得出a、b之间的关系;最后利用PQ的长度大于与之间的距离求解不等式,而不是简单的解不等式,这个是解题关键.16、x>﹣3x≤﹣【解析】当x>−3时,2x+6>0;解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.故答案为x>−3;x⩽﹣.17、﹣1【解析】
直接提取公因式ab,进而将已知代入求出即可.【详解】∵a+b=3,ab=-3,∴a2b+ab2=ab(a+b)=4×(-3)=-1.故答案为-1【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.18、3【解析】
平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【详解】根据题意得:这10名学生周末学习的平均时间=(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),故答案为:3.【点睛】此题考查条形统计图、加权平均数,解题关键在于利用加权平均数公式即可.三、解答题(共66分)19、(1)图略(1)向右平移10个单位,再向下平移一个单位.(答案不唯一)【解析】(1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;(1)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几个单位.20、解:设从墙上的影子的顶端到树的顶端的垂直高度是x米.则有0.8/1=x/5.5解得x=1.1.∴树高是1.1+1.5=5.9(米),【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在教学楼上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上墙上的影高就是树高.21、(1)20°;(2)22.【解析】试题分析:(1)根据三角形内角和定理求出∠C,根据线段垂直平分线的性质得到DA=DC,求出∠DAC,计算即可;(2)根据DA=DC,三角形的周长公式计算.解:(1)∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,∵DE垂直平分AC,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)∵DE垂直平分AC,∴AD=CD,∴AB+AD+BD=AB+CD+BD=AB+BC=10+12=22,∴△ABD的周长为22.22、3,2.【解析】
根据比例求出EC,设CH=x,表示出DH,根据折叠可得EH=DH,在Rt△ECH中,利用勾股定理列方程求解即可得到CH.【详解】解:∵BC=9,BE:EC=1:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC1+CH1=EH1.即31+x1=(9﹣x)1,解得x=2,∴CH=2.【点睛】本题考查了翻折变换,正方形的性质,翻折前后对应边相等,对应角相等,此类题目,利用勾股定理列出方程是解题的关键.23、问题背景:EF=BE+DF,理由见解析;探索延伸:结论仍然成立,理由见解析;实际应用:210海里.【解析】
问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;探索延伸:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;实际应用:连接EF,延长AE、BF相交于点C,然后与(2)同理可证.【详解】问题背景:EF=BE+DF,证明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF,故答案为EF=BE+DF;探索延伸:结论EF=BE+DF仍然成立,理由:延长FD到点G.使DG=BE,连结AG,如图2,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 培训课件增殖保健品
- 初中语文新课改培训
- 精神障碍饮食护理
- 老年人骨科手术护理
- DB11∕T 1251-2015 金属非金属矿山建设生产安全规范
- 食品小作坊食品安全管理制度
- 康复医院竞聘护理部主任
- 强电施工劳务分包合同
- 艺成艺术培训中心教师管理制度
- 农业生态宝典
- 湖北省武汉市东湖高新区2021-2022学年九年级上学期期中考试化学试题
- 出口托运单据课件
- 环境法全套课件
- 《狼王梦》好书推荐课件
- 创业培训课件
- GB/T 15241.1-2023与心理负荷相关的工效学原则第1部分:心理负荷术语与测评方法
- 第一章声现象-噪声及其控制 教学设计 2022-2023学年苏科版物理八年级上册
- 氢燃料电池课件
- 加班审批表完
- 脑梗塞诊断与鉴别诊断
- 29、顾客意见簿(表029)
评论
0/150
提交评论