安徽省合肥庐江县联考2024年八年级数学第二学期期末综合测试模拟试题含解析_第1页
安徽省合肥庐江县联考2024年八年级数学第二学期期末综合测试模拟试题含解析_第2页
安徽省合肥庐江县联考2024年八年级数学第二学期期末综合测试模拟试题含解析_第3页
安徽省合肥庐江县联考2024年八年级数学第二学期期末综合测试模拟试题含解析_第4页
安徽省合肥庐江县联考2024年八年级数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥庐江县联考2024年八年级数学第二学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列计算结果正确的是A. B. C. D.2.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是()A.梯形 B.矩形 C.菱形 D.正方形3.下列等式不一定成立的是()A. B.C. D.4.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列说法,你认为正确的是()A.0的倒数是0 B.3-1=-3 C.是有理数 D.36.定义一种新运算:当时,;当时,.若,则的取值范围是()A.或 B.或C.或 D.或7.今年,重庆市南岸区广阳镇一果农李灿收获枇杷20吨,桃子12吨,现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.李灿安排甲、乙两种货车一次性地将水果运到销售地的方案数有()A.1种 B.2种 C.3种 D.4种8.将矩形按如图所示的方式折叠,得到菱形.若,则的长是()A.1 B. C. D.29.要使二次根式有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x<110.抛物线y=x2﹣4x+5的顶点坐标是()A.(2,1) B.(﹣2,1) C.(2,5) D.(﹣2,5)二、填空题(每小题3分,共24分)11.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.12.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.13.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)14.若,则的值为__________,的值为________.15.如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+PD的最小值等于______.16.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.17.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).18.计算:×=____________.三、解答题(共66分)19.(10分)已知一次函数,,,.(1)说明点在直线上;(2)当直线经过点时,点时直线上的一点,若,求点的坐标.20.(6分)如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE为何值时四边形CEDF是矩形?为什么?②AE为何值时四边形CEDF是菱形?为什么?21.(6分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.22.(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?23.(8分)为了解初二学生参加户外活动的情况,某县教育局对其中500名初二学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如下统计图。(参加户外活动的时间分为四种类别:“0.5小时”,“1小时”,“1.5小时”,“2小时”)请根据图示,回答下列问题:(1)求学生每天户外活动时间的平均数,众数和中位数;(2)该县共有12000名初二学生,请估计该县每天户外活动时间超过1小时的初二学生有多少人?24.(8分)对于一次函数y=kx+b(k≠0),我们称函数y[m]=为它的m分函数(其中m为常数).例如,y=3x+1的4分函数为:当x≤4时,y[4]=3x+1;当x>4时,y[4]=-3x-1.(1)如果y=x+1的-1分函数为y[-1],①当x=4时,y[-1]______;当y[-1]=-3时,x=______.②求双曲线y=与y[-1]的图象的交点坐标;(1)如果y=-x+1的0分函数为y[0],正比例函数y=kx(k≠0)与y=-x+1的0分函数y[0]的图象无交点时,直接写出k的取值范围.25.(10分)第二届全国青年运动会将于2019年8月在太原开幕,这是山西历史上第一次举办全国大型综合性运动会,必将推动我市全民健康理念的提高.某体育用品商店近期购进甲、乙两种运动衫各50件,甲种用了2000元,乙种用了2400元.商店将甲种运动衫的销售单价定为60元,乙种运动衫的销售单价定为88元.该店销售一段时间后发现,甲种运动衫的销售不理想,于是将余下的运动衫按照七折销售;而乙种运动衫的销售价格不变.商店售完这两种运动衫至少可获利2460元,求甲种运动衫按原价销售件数的最小值.26.(10分)某校八年级同学参加社会实践活动,到“庐江农民创业园”了解大棚蔬菜生长情况.他们分两组对西红柿的长势进行观察测量,分别收集到10株西红柿的高度,记录如下(单位:厘米)第一组:32394555605460285641第二组:51564446405337475046根据以上数据,回答下列问题:(1)第一组这10株西红柿高度的平均数是,中位数是,众数是.(2)小明同学计算出第一组方差为S12=122.2,请你计算第二组方差,并说明哪一组西红柿长势比较整齐.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据二次根式的运算法则进行分析.【详解】A.,不是同类二次根式,不能合并,本选项错误;B.,本选项错误;C.,本选项正确;D.,本选项错误.故选C【点睛】本题考核知识点:二次根式运算.解题关键点:理解二次根式运算法则.2、C【解析】

如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形.故选C.3、B【解析】

直接利用二次根式的性质分别化简的得出答案.【详解】A.()2=5,正确,不合题意;B.(a≥0,b≥0),故此选项错误,符合题意;C.π﹣3,正确,不合题意;D.,正确,不合题意.故选B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4、C【解析】

根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【详解】∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限,不经过第三象限.故选C.【点睛】本题考查了一次函数图象与系数的关系.解答本类型题目时,根据函数系数的正负确定函数图象经过的象限是关键.5、D【解析】

根据1没有倒数对A进行判断;根据负整数指数幂的意义对B进行判断;根据实数的分类对C进行判断;根据算术平方根的定义对D进行判断.【详解】A.1没有倒数,所以A选项错误;B.3﹣1,所以B选项错误;C.π是无理数,所以C选项错误;D.3,所以D选项正确.故选D.【点睛】本题考查了算术平方根:一个正数的正的平方根叫这个数的算术平方根,1的算术平方根为1.也考查了倒数、实数以及负整数指数幂.6、C【解析】

分3>x+2即x<1和3<x+2即x>1两种情况,根据新定义列出不等式求解可得.【详解】当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>−2,∴−2<x<1;当3<x+2,即x>1时,3(x+2)−(x+2)>0,解得:x>−2,∴x>1,综上,−2<x<1或x>1,故选:C.7、C【解析】

设租用甲种货车x辆,则租用乙种货车(8-x)辆,根据8辆货车可一次将枇杷20吨、桃子12吨运完,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出结论.【详解】解:设租用甲种货车x辆,则租用乙种货车(8-x)辆,

依题意,得:解得:2≤x≤1.

∵x为整数,

∴x=2,3,1,

∴共有3种租车方案.

故选:C.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.8、A【解析】

由矩形可得是直角,由菱形的对角线平分每组对角,再由折叠可得,在直角三角形中,由边角关系可求出答案.【详解】解:由折叠得:是矩形,是菱形,,在中,,,,故选:.【点睛】本题考查矩形的性质、菱形的性质、折叠轴对称的性质以及直角三角形的边角关系等知识,求出,把问题转化到中,由特殊的边角关系可求出结果.9、A【解析】

根据二次根式有意义的条件:被开方数为非负数,解答即可.【详解】∵有意义,∴x-1≥0,解得x≥1,故选A.【点睛】本题考查二次根式有意义的条件,使用二次根式有意义,被开方数大于等于0;熟练掌握二次根式的被开方数的非负数性质是解题关键.10、A【解析】

先把抛物线的解析式配成顶点式得到y=(x﹣2)2+1,然后根据抛物线的性质即可求解.【详解】∵y=x2﹣4x+5=(x﹣2)2+1,∴抛物线的顶点坐标为(2,1).故选A.【点睛】本题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h,本题还考查了利用配方法化二次函数的一般式化为顶点式.二、填空题(每小题3分,共24分)11、【解析】

由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.【详解】∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.∴从中随机摸出一个球,摸到红球的概率是:故答案为:【点睛】此题考查概率公式,掌握运算法则是解题关键12、【解析】

延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.【详解】延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.13、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.14、,【解析】

令,用含k的式子分别表示出,代入求值即可.【详解】解:令,则,所以,.故答案为:(1).,(2).【点睛】本题考查了分式的比值问题,将用含同一字母的式子表示是解题的关键.15、【解析】

过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到AB∥CD,推出PE=PD,由此得到当PB+PE最小时2PB+PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+PD的最小值等于6.【详解】过点P作PE⊥AD交AD的延长线于点E,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDC=∠DAB=30°,∴PE=PD,∵2PB+PD=2(PB+PD)=2(PB+PE),∴当PB+PE最小时2PB+PD有最小值,此时P、B、E三点在同一条直线上,∵∠DAB=30°,∠AEP=90°,AB=6,∴PB+PE的最小值=AB=3,∴2PB+PD的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.16、1【解析】

先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.【详解】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100-30=70名,∴全校持“赞成”意见的学生人数约=2400×70100故答案为:1.【点睛】本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.17、y=2x【解析】试题分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.18、【解析】

直接利用二次根式乘法运算法则化简得出答案.【详解】=.故答案为.【点睛】此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键.三、解答题(共66分)19、(1)详见解析;(2)点坐标为,(,5).【解析】

(1)将x=2代入y=kx+3-2k,求出y=3,由此即可证出点M(2,3)在直线y=kx+3-2上;

(2)根据点C的坐标利用待定系数法求出此时直线的解析式,由此可设点P的坐标为(m,m),再根据S△BCP=2S△ABC,即可得出关于m的含绝对值符号的一元一次方程,解方程求出m的值,将其代入P点坐标即可得出结论.【详解】证明:∵y=kx+3-2k,

∴当x=2时,y=2k+3-2k=3,

∴点M(2,3)在直线y=kx+3-2k上;

(2)解:将点C(-2,-3)代入y=kx+3-2k,

得:-3=-2k+3-2k,解得:k=,

此时直线CM的解析式为y=x.

设点P的坐标为(m,m).

∵S△BCP=BC•|yP-yB|,S△ABC=BC•|yA-yC|,S△BCP=2S△ABC,

∴|m-(-3)|=2×[1-(-3)],

解得:m1=或m2=,

∴点P的坐标为(,-11)或(,5).【点睛】本题考查了一次函数图象上点的坐标特征、三角形的面积以及待定系数法求函数解析式,解题的关键是:(1)将x=2代入函数解析式,正确计算求出y的值;(2)根据面积间的关系找出关于m含绝对值符号的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.20、(1)见解析;(2)①当AE=4cm时,四边形CEDF是矩形.理由见解析;②当AE=2时,四边形CEDF是菱形,理由见解析.【解析】

(1)先证△GED≌△GFC,推出DE=CF和DE∥CF,再根据平行四边形的判定推出即可;(2)①作AP⊥BC于P,先证明△ABP≌△CDE,然后求出DE的值即可得出答案;②先证明△CDE是等边三角形,然后求出DE的值即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵G是CD的中点,∴GD=GC,∴△GED≌△GFC,∴DE=CF,DE∥CF,∴四边形CEDF是平行四边形,(2)①当AE=4cm时,四边形CEDF是矩形.理由:作AP⊥BC于P,∵四边形CEDF是矩形,∴∠CED=∠APB=90°,∴AP=CE,又∵ABCD是平行四边形,∴AB=CD=4cm,则△ABP≌△CDE(HL),∴BP=DE,∵AB=4cm,∠B=60°,∴BP=AB×cos60°=4×=2(cm),∴BP=DE=2cm,又∵BC=AD=6cm,∴AE=AD-DE=6-2=4(cm);.②当AE=2时,四边形CEDF是菱形.理由:∵平行四边形CEDF是菱形,∴DE=CE,又∵∠CDE=∠B=60°,∴△CDE是等边三角形,∵四边形ABCD是平行四边形,∴AB=CD=4cm,DE=CD=4cm,∵BC=AD=6cm,则AE=AD-DE=6-4=2(cm).【点睛】本题考查了平行四边形的判定和性质,等边三角形的判定和性质,全等三角形的判定和性质以及三角函数应用,注意:有一组对边平行且相等的四边形是平行四边形.21、(1)y=﹣x2+x+1;(2)点P的坐标为(1,)或(2,1).【解析】

(1)根据抛物线y=ax2+bx+1与x轴分别交于A(-1,0),B(3,0),可以求得该抛物线的解析式;(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P的坐标.【详解】(1)∵抛物线y=ax2+bx+1与x轴分别交于A(-1,0),B(3,0),∴,解得,,∴抛物线的解析式为y=-x2+x+1;(2)∵y=-x2+x+1,∴当x=0时,y=1,即点C的坐标为(0,1),∵B(3,0),C(0,1),∴直线BC的解析式为:y=−x+1,设点P的坐标为(p,-p2+p+1),将x=p代入y=−x+1得y=−p+1,∵△PBC面积为1,∴,解得,p1=1,p2=2,当p1=1时,点P的坐标为(1,),当p2=2时,点P的坐标为(2,1),即点P的坐标为(1,)或(2,1).【点睛】本题考查抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质解答.22、(1)y甲=1050+15x(x≥10);y乙=13.5x+1080(x≥10);(2)见解析.【解析】

(1)在甲店购买的付款数=10个足球的总价+(x﹣10)件对抗训练背心的总价,把相关数值代入化简即可;在乙店购买的付款数=10个足球的总价的总价×0.9+x件对抗训练背心×0.9;(2)分别根据y甲=y乙时,y甲>y乙时,y甲<y乙时列出对应式子求解即可.【详解】(1)y甲=120×10+15(x﹣10)=1050+15x(x≥10);y乙=120×0.9×10+15×0.9x=13.5x+1080(x≥10);(2)y甲=y乙时,1050+15x=13.5x+1080,解得:x=20,即当x=20时,到两店一样合算;y甲>y乙时,1050+15x>13.5x+1080,解得:x>20,即当x>20时,到乙店合算;y甲<y乙时,1050+15x<13.5x+1080,解得:10≤x<20,即当10≤x<20时,到甲店合算.【点睛】本题考查了一次函数的应用,解答这类问题时,要先建立函数关系式,然后再分类讨论.23、(1)平均数是1.24;众数:1;中位数:1;(2)该校每天户外活动时间超过1小时的学生有5280人.【解析】分析:(1)根据条形图可得:户外活动的时间分分别为“0.5小时”,“1小时”,“1.5小时”,“2小时”的人数,然后根据平均数,众数和中位数的定义解答即可;(2)先求出500名该县每天户外活动时间超过1小时的初二学生所占的百分比,乘以12000即可.详解:(1)观察条形统计图,可知这组样本数据的平均数是:则这组样本数据的平均数是1.24小时.众数:1小时中位数:1小时;(2)被抽查的500名学生中,户外活动时间超过1小时的有220人,所以(人)∴该校每天户外活动时间超过1小时的学生有5280人.点睛:本题考查的是条形统计图、平均数、众数和中位数的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24、(2)①5,-4或2;②(-2,-2);(2)k≥2【解析】

(2)①先写出函数的-2分函数,代入即可,注意,函数值时-3时分两种情况代入;②先写出函数的-2分函数,分两种情况和双曲线解析式联立求解即可;(2)先写出函数的0分函数,画出图象,根据图象即可求得.【详解】解:(2)①y=x+2的-2分函数为:当x≤-2时,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论