广东省深圳市育才一中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第1页
广东省深圳市育才一中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第2页
广东省深圳市育才一中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第3页
广东省深圳市育才一中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第4页
广东省深圳市育才一中学2024届八年级下册数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市育才一中学2024届八年级下册数学期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,∠C=90°,AB=12,BC=3,CD=1.若∠ABD=90°,则AD的长为()A.10 B.13 C.8 D.112.如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEFA.23cm B.3cm C.43.下列计算正确的是()A. B.2 C.()2=2 D.=34.如图,四边形ABCD是菱形,圆O经过点A、C、D,与BC相交于点E,连接AC、AE.若,则()A. B. C. D.5.下列命题中正确的是A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形6.实数的值在()A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间7.若一次函数不经过第三象限,则的取值范围为A. B.C. D.8.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是()A. B. C. D.9.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对10.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有()组.A.4 B.5 C.6 D.7二、填空题(每小题3分,共24分)11.将点向右平移4个单位,再向下平移3个单位,则平移后点的坐标是__________.12.如图,在Rt△ABC中,BD平分∠ABC交AC于点D,过D作DE∥BC交AB于点E,若DE刚好平分∠ADB,且AE=a,则BC=_____.13.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.14.如果一次函数y=kx+2的函数值y随着x的值增大而减小,那么k的取值范围是_____.15.在射击比赛中,某运动员的1次射击成绩(单位:环)为:7,8,10,8,9,1.计算这组数据的方差为_________.16.如图,四边形ABCD是正方形,△EBC是等边三角形,则∠AED的度数为_________.17.如图,正方形ABOC的面积为4,反比例函数的图象过点A,则k=_______.18.如图,△ABC中,BD⊥CA,垂足为D,E是AB的中点,连接DE.若AD=3,BD=4,则DE的长等于_____三、解答题(共66分)19.(10分)已知一次函数y=kx+1经过点(1,2),O为坐标轴原点.(1)求k的值.(2)点P是x轴上一点,且满足∠APO=45°,直接写出P点坐标.20.(6分)如图,在矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形;21.(6分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,AE∥BD,OE与AB交于点F.(1)试判断四边形AEBO的形状,并说明理由;(2)若OE=10,AC=16,求菱形ABCD的面积.22.(8分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD.求证:四边形ABDF是平行四边形.23.(8分)如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.24.(8分)如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.(1)由图1通过观察、猜想可以得到线段AC与线段BC的数量关系为___,位置关系为__;(2)保持图1中的△ABC固定不变,绕点C旋转DE所在的直线MN到图2中的位置(当垂线AD、BE在直线MN的同侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明(第一问中得到的猜想结论可以直接在证明中使用);(3)保持图2中的△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有___关系.25.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及m的值.解:设另一个因式为,得则.解得:,另一个因式为,m的值为问题:仿照以上方法解答下面问题:已知二次三项式有一个因式是,求另一个因式以及k的值.26.(10分)如图,是矩形对角线的交点,,.(1)求证:四边形是菱形;(2)若,,求矩形的面积.

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:在Rt△BCD中,因为BC=3,CD=1,∠C=90°,所以由勾股定理可得:BD=.在Rt△ABD中,BA=12,BD=5,∠ABD=90°,由勾股定理可得:AD=.故选B考点:勾股定理.2、D【解析】

首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,AB=AD∠B∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=12AB=1cm∴△AEF是等边三角形,AE=AB2∴周长是33故选:D.【点睛】本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.3、C【解析】

利用二次根式的加减运算及立方根的定义,逐一分析四个选项的正误即可得出结论.【详解】解:A、>3>,∴选项A不正确;B、,∴选项B不正确;C、()2=2,∴选项C正确;D、=3,∴选项D不正确.故选C.【点睛】本题考查了立方根、算式平方根以及二次根式的加减,利用排除法逐一分析四个选项的正误是解题的关键.4、B【解析】

根据菱形的性质得到∠ACB=∠DCB=(180°-∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论,【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°-∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB−∠ACE=27°,故选B.【点睛】本题主要考查了圆内接四边形的性质,菱形的性质,掌握这些性质是解题的关键.5、D【解析】试题解析:对角线互相垂直平分的四边形是菱形;对角线互相垂直的平行四边形是菱形;故选D.点睛:菱形的判定方法有:有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边都相等的四边形是菱形.6、B【解析】

直接利用二次根式的估算,的值在1和,即可得出结果.【详解】解:∵1<<,∴实数的值在1与2之间.故选:B.【点睛】此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.7、A【解析】

解:∵一次函数不经过第三象限,,解之得,.故选A.8、C【解析】

根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,逐一判定即可.【详解】A选项,是轴对称图形,不符合题意;B选项,是轴对称图形,不符合题意;C选项,是中心对称图形,符合题意;D选项,是轴对称图形,不符合题意;故选:C.【点睛】此题主要考查对中心对称图形的理解,熟练掌握,即可解题.9、A【解析】

∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.10、C【解析】分析:根据平行四边形的判定来进行选择.①两组对边分别平行的四边形是平行四边形;②两组对角分别平行的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.详解:共有6组可能:①②;①③;①④;①⑤;②⑤;④⑤.

选择①与②:∵AB∥CD,

∴∠BAO=∠DCO,∠ABO=∠CDO,

在△AOB与△COD中,,

∴△AOB≌△COD,

∴AB=CD,

∴四边形ABCD为平行四边形.①与③(根据一组对边平行且相等)

①与④:∵∠BAD=∠DCB

∴AD∥BC

又AB∥DC

根据两组对边分别平行可推出四边形ABCD为平行四边形.

①与⑤,根据定义,两组对边分别平行的四边形是平行四边形;②与⑤:∵AD∥BC

OA=OC

∴△AOD≌△COB

故AD=BC,四边形ABCD为平行四边形.

④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形.共有6种可能.故选C.点睛:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.二、填空题(每小题3分,共24分)11、(3,-1)【解析】

直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【详解】将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,

则平移后点的坐标是(-1+4,2-3),即(3,-1),

故答案为:(3,-1).【点睛】此题考查坐标与图形变化-平移,解题关键在于掌握左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.12、6a【解析】

根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根据含30°角的直角三角形的性质即可得到结论.【详解】∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠ADE=∠C,∠EDB=∠CBD,∵DE平分∠ADB,∴∠ADE=∠EDB,∴∠CBD=∠C,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C=30°,∴∠ADE=30°,∵AE=a,∴DE=2a,∵∠EDB=∠DBC,∠DBE=∠EBD,∴BE=DE=2a,∴AB=3a,∴BC=2AB=6a.故答案为:6a.【点睛】本题考查角平分线的定义、平行线的性质、及含30°角的直角三角形的性质,熟练掌握30°角所对的直角边等于斜边一半的性质是解题关键.13、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.14、k<1.【解析】

根据一次函数的性质解答即可.【详解】∵一次函数y=kx+2,函数值y随x的值增大而减小,∴k<1.故答案为:k<1.【点睛】本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠1),当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.15、【解析】试题分析:先计算平均数所以方差为考点:方差;平均数16、150【解析】

根据题意先得出AB=BC=BE,EC=BC=DC,并以此求出∠AEB和∠DEC,进而利用∠AED=360°-∠AEB-∠DEC-∠BEC即可求出∠AED的度数.【详解】解:∵四边形ABCD是正方形,△EBC是等边三角形,∴AB=BC=BE,EC=BC=DC,∠ABE=∠DCE=90°-60°=30°,∴∠AEB=∠EAB=(180°-30°)÷2=75°,∴∠DEC=∠EDC=(180°-30°)÷2=75°,∴∠AED=360°-∠AEB-∠DEC-∠BEC=360°-75°-75°-60°=150°.故答案为:150°.【点睛】本题考查正方形的性质以及等腰、等边三角形的性质,熟练掌握相关的性质是解题的关键.17、-4【解析】

试题分析:反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为.解:依题意得,又∵图象位于第二象限,∴∴.考点:反比例函数中k的几何意义点评:本题属于基础应用题,只需学生熟练掌握反比例函数中k的几何意义,即可完成.18、2.1【解析】

根据勾股定理求出AB,根据直角三角形斜边上中线性质得出DE=AB,代入求出即可.【详解】.解:∵BD⊥CA,∴∠ADB=90°,在Rt△ADB中,由勾股定理得:AB===1,∵E是AB的中点,∠ADB=90°,∴DE=AB=2.1,故答案为:2.1.【点睛】本题考查了勾股定理和直角三角形斜边上中线的性质,能求出AB的长和得出DE=AB是解此题的关键.三、解答题(共66分)19、(1)1(2)P(3,0)或P(−1,0).【解析】

(1)直接把点A(1,2)代入一次函数y=kx+1,求出k的值即可;(2)求出直线y=x+1与x轴的交点,进而可得出结论.【详解】(1)∵一次函数y=kx+1经过A(1,2),∴2=k+1,∴k=1;(2)如图所示,∵k=1,∴一次函数的解析式为y=x+1,∴B(0,1),C(−1,0),∴∠ACO=45°,∴P(−1,0);∴P关于直线x=1与P对称,∴P(3,0).∴P(3,0)或P(−1,0).【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于作辅助线20、见解析【解析】

根据MN是BD的垂直平分线可得OB=OD,根据两直线平行,内错角相等可得∠OBN=∠ODM,然后利用“角边角”证明△BON和△DOM全等,根据全等三角形对应边相等可得BN=MD,从而求出四边形BMDN是平行四边形,再根据线段垂直平分线上的点到两端点的距离相等可得MB=MD,然后根据邻边相等的平行四边形是菱形证明即可.【详解】∵MN是BD的垂直平分线,

∴OB=OD,∠BON=∠DOM,

∵四边形ABCD是矩形,

∴AD∥BC,

∴∠OBN=∠ODM

在△BON和△DOM中,,

∴△BON≌△DOM(ASA),

∴BN=MD,

∴四边形BMDN是平行四边形,

∵MN是BD的垂直平分线,

∴MB=MD,

∴平行四边形BMDN是菱形.【点睛】本题考查了菱形的判定,主要利用了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,平行四边形的判定与性质,全等三角形的判定与性质,熟记各性质并准确识图是解题的关键.21、(1)四边形AEBO为矩形,理由见解析(2)96【解析】

(1)根据有3个角是直角的四边形是矩形即可证明;(2)根据矩形的性质得出AB=OE=10,再根据勾股定理求出BO,即可得出BD的长,再利用菱形的面积公式进行求解.【详解】(1)四边形AEBO为矩形,理由如下:∵菱形ABCD的对角线AC、BD相交于点O∴AC⊥BD,∵BE∥AC,AE∥BD,∴BE⊥BD,AE⊥AC,∴四边形AEBO为矩形;(2)∵四边形AEBO为矩形∴AB=OE=10,∵AO=12AC=8∴OB=10∴BD=12,故S菱形ABCD=12AC×BD=1【点睛】此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知矩形的判定与性质及菱形的性质定理.22、证明见解析.【解析】

先由SSS证明△ABC≌△DFE,再根据全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF和AB=DF,即可得出结论.【详解】解:∵BE=FC∴BE+EC=FC+EC∴BC=FE在△ABC和△DFE中,,∴△ABC≌△DFE,∴∠ABC=∠DFE∴AB∥DF,又AB=DF∴四边形ABDF是平行四边形【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.23、(2)y=﹣x+2.(2)x<﹣2.(3)3;(4)(2,2)或(0,2)或P(2+,﹣)或(2﹣,).【解析】

(2)利用待定系数法即可解决问题;(2)观察图象写出直线y=kx+b的图象在直线y=ax的图象下方的自变量的取值范围即可;(3)求出点C坐标,利用三角形的面积公式计算即可;(4)分三种情形分别讨论求解即可解决问题;【详解】解:(2)依题意得:,解得,∴所求的一次函数的解析式是y=﹣x+2.(2)观察图形可知:不等式(kx+b)﹣ax<0的解集;x<﹣2.(3)对于y=﹣x+2,令y=0,得x=2∴C(2,0),∴OC=2.∴S△AOC=×2×3=3.(4)①当点P与B重合时,OP2=OC,此时P2(0,2);②当PO=PC时,此时P2在线段OC的垂直平分线上,P2(2,2);③当PC=OC=2时,设P(m.﹣m+2),∴(m﹣2)2+(﹣m+2)2=4,∴m=2±,可得P3(2﹣,),P4(2+,﹣),综上所述,满足条件的点P坐标为:(2,2)或(0,2)或P(2+,﹣)或(2﹣,).【点睛】本题考查一次函数综合题、一元一次不等式的解、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.24、(1)AC=BC,AC⊥BC,;(2)DE=AD+BE,理由见解析;(3)DE=BE−AD.【解析】

(1)根据矩形的性质及勾股定理,即可证得△ADC≌△BEC,根据全等三角形的性质即可得到结论;(2)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系;(3)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系.【详解】(1)AC=BC,AC⊥BC,在△ADC与△BEC中,,∴△AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论