安徽省合肥市瑶海区2024届八年级下册数学期末检测模拟试题含解析_第1页
安徽省合肥市瑶海区2024届八年级下册数学期末检测模拟试题含解析_第2页
安徽省合肥市瑶海区2024届八年级下册数学期末检测模拟试题含解析_第3页
安徽省合肥市瑶海区2024届八年级下册数学期末检测模拟试题含解析_第4页
安徽省合肥市瑶海区2024届八年级下册数学期末检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市瑶海区2024届八年级下册数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知一次函数的图象与轴交于点,则根据图象可得不等式的解集是()A. B. C. D.2.我国在近几年奥运会上所获金牌数(单位:枚)统计如下:届数23届24届25届26届27届28届金牌这组数据的众数与中位数分别是()A.32、32 B.32、16 C.16、16 D.16、323.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1 B.2 C.3 D.44.△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对5.在平面直角坐标系中,点P(-2,x2A.第一象限 B.第二象限 C.第三象限 D.第四象限6.下列各式从左到右的变形中,是因式分解的为()A. B.C. D.7.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35° B.45° C.50° D.55°8.下列几组数中,能作为直角三角形三边长度的是()A.2,3,4 B.4,5,6 C.6,8,11 D.5,12,139.如果代数式能分解成形式,那么k的值为()A.9 B.﹣18 C.±9 D.±1810.代数式有意义的取值范围是()A. B. C. D.11.下列函数中为正比例函数的是()A. B. C. D.12.已知两点的坐标分别是(-2,3)和(2,3),则说法正确的是()A.两点关于x轴对称B.两点关于y轴对称C.两点关于原点对称D.点(-2,3)向右平移两个单位得到点(2,3)二、填空题(每题4分,共24分)13.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们次还原魔方所用时间的平均值与方差:甲乙丙丁(秒)要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择________同学.14.已知,,则的值为___________.15.如果一组数据:5,,9,4的平均数为6,那么的值是_________16.如图,在矩形中,点为的中点,点为上一点,沿折叠,点恰好与点重合,则的值为______.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A5的坐标是___.18.将矩形ABCD按如图所示的方式折叠,得到菱形AECF,若AB=9,则菱形AECF的周长为______.三、解答题(共78分)19.(8分)(如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.⑴如图②,若M为AD边的中点,①△AEM的周长=_________cm;②求证:EP=AE+DP;⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.20.(8分)如图,△ABC的三个顶点在正方形网格的格点上,网格中的每个小正方形的边长均为单位1.(1)求证:△ABC为直角三角形;(2)求点B到AC的距离.21.(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A、B、C、D、E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?22.(10分)平面直角坐标系xOy中,直线y=x+b与直线y=x交于点A(m,1).与y轴交于点B(1)求m的值和点B的坐标;(2)若点C在y轴上,且△ABC的面积是1,请直接写出点C的坐标.23.(10分)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.24.(10分)如图,在▱ABCD中,CE平分∠BCD,且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠B=52°,求∠1的大小.25.(12分)直线是同一平面内的一组平行线.(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,求证.26.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v2=________米/分;

(2)写出d1与t的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?

参考答案一、选择题(每题4分,共48分)1、D【解析】

,即,从图象可以看出,当时,,即可求解.【详解】解:,即,从图象可以看出,当时,,故选:.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值,是解答本题的关键.2、C【解析】数据1出现了两次最多为众数,1处在第5位和第6位,它们的平均数为1.

所以这组数据的中位数是1,众数是1,

故选C.【点睛】确定一组数据的中位数和众数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3、D【解析】

分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【详解】证明:如图:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.【点睛】此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.4、C【解析】

分两种情况:△ABC是锐角三角形和△ABC是钝角三角形,都需要先求出BD,CD的长度,在锐角三角形中,利用求解;在钝角三角形中,利用求解.【详解】(1)若△ABC是锐角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴(2)若△ABC是钝角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴综上所述,BC的长为14或4故选:C.【点睛】本题主要考查勾股定理,掌握勾股定理并分情况讨论是解题的关键.5、B【解析】

∵-20,x2+10,∴点P(-2,x2+1)故选B.6、D【解析】

根据把整式变成几个整式的积的过程叫因式分解进行分析即可.【详解】A、是整式的乘法运算,不是因式分解,故A不正确;B、是积的乘方,不是因式分解,故B不正确;C、右边不是整式乘积的形式,故C不正确;D、是按照平方差公式分解的,符合题意,故D正确;故选:D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.7、D【解析】

延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.【详解】解:延长PF交AB的延长线于点G.在△BGF与△CPF中,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴(直角三角形斜边上的中线等于斜边的一半),∵(中点定义),∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,易证FE=FG,∴∠FGE=∠FEG=55°,∵AG∥CD,∴∠FPC=∠EGF=55°故选:D.【点睛】此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.8、D【解析】

欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、22+32≠42,故不是直角三角形,故错误;B、42+52≠62,故不是直角三角形,故错误;C、62+82≠112,故不是直角三角形,故错误;D、52+122=132,故是直角三角形,故正确.故选D.9、B【解析】

利用完全平方公式的结构特征判断即可确定出k的值.【详解】解:∵=(x-9)2,

∴k=-18,

故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.10、A【解析】

解:根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.故选A.11、C【解析】

根据正比例函数的定义y=kx(k≠0)进行判断即可.【详解】解:A项是二次函数,不是正比例函数,本选项错误;B项,是反比例函数,不是正比例函数,本选项错误;C项,是正比例函数,本选项正确;D项,是一次函数,不是正比例函数,本选项错误.故选C.【点睛】本题考查了正比例函数的概念,熟知正比例函数的定义是判断的关键.12、B【解析】

几何变换.根据关于y轴对称的点坐标横坐标互为相反数,纵坐标相等,可得答案.【详解】解:∵两点的坐标分别是(-2,3)和(2,3),横坐标互为相反数,纵坐标相等,∴两点关于y轴对称,故选:B.【点睛】本题考查了关于y轴对称的点坐标,利用关于y轴对称的点坐标横坐标互为相反数,纵坐标相等是解题关键.二、填空题(每题4分,共24分)13、丁【解析】

据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:因为乙和丁的方差最小,但丁平均数最小,

所以丁还原魔方用时少又发挥稳定.

故应该选择丁同学.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、1【解析】

将写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵,,∴,故答案为:1.【点睛】本题考查了平方差公式的应用,将写成(x+y)(x-y)形式是代入求值在关键.15、6【解析】

根据平均数的定义,即可求解.【详解】根据题意,得解得故答案为6.【点睛】此题主要考查平均数的求解,熟练掌握,即可解题.16、【解析】【分析】由矩形性质可得AB=CD,BC=AD;由对折得AB=BE,设AB=x,根据勾股定理求出BC关于x的表达式,便可得到.【详解】设AB=x,在矩形ABCD中,AB=CD=x,BC=AD;因为,E为CD的中点,所以,CE=,由对折可知BE=AB=x.在直角三角形BCE中BC=,所以,.故答案为图(略),【点睛】本题考核知识点:矩形性质,轴对称.解题关键点:利用轴对称性质得到相等线段,利用勾股定理得到BE和BC的关系.17、(15,16).【解析】

根据一次函数图象上点的特征及正方形的性质求出A1、A2、A3的坐标,找出规律,即可解答.【详解】∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…∴An的坐标为(2n﹣1﹣1,2n﹣1),∴A5的坐标是(25﹣1﹣1,25﹣1),即(15,16),故答案为:(15,16).【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.18、1【解析】

根据折叠的性质得AD=AO,CO=BC,∠BCE=∠OCE,所以AC=2BC,则根据含30度的直角三角形三边的关系得∠CAB=30°,于是BC=33AB=33,∠ACB=60°,接着计算出∠BCE=30°,然后计算出BE=33BC=3,CE=2BE=6,于是可得菱形【详解】解:∵矩形ABCD按如图所示的方式折叠,得到菱形AECF,∴AD=AO,CO=BC,∠BCE=∠OCE,而AD=BC,∴AC=2BC,∴∠CAB=30°,∴BC=33AB=33,∠ACB=60∴∠BCE=30°,∴BE=33BC=3∴CE=2BE=6,∴菱形AECF的周长=4×6=1.故答案为:1【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系.三、解答题(共78分)19、(1)①6,②见解析;(2)△PDM的周长保持不变,理由见解析.【解析】

(1)①由折叠知BE=EM,AE+EM+AM=AE+EB+AM=AB+AM,根据边长及中点易求周长;②延长EM交CD延长线于Q点.可证△AEM≌△DQM,得AE=DQ,EM=MQ.所以PM垂直平分EQ,得EP=PQ,得证;(2)不变化,可证△AEM∽△DMP,两个三角形的周长比为AE:MD,设AM=x,根据勾股定理可以用x表示MD的长与△MAE的周长,再根据周长比等于相似比,即可求解.【详解】(1)①由折叠可知,BE=BM,∠B=∠MEP=90°,△AEM的周长=AE+EM+AM=AE+EB+AM=AB+AM.∵AB=4,M是AD中点,∴△AEM的周长=6(cm)②证明:延长EM交CD延长线于Q点.

∵∠A=∠MDQ=90°,AM=DM,∠AME=∠DMQ,

∴△AME≌△DMQ.

∴AE=DQ,EM=MQ.

又∵∠EMP=∠B=90°,

∴PM垂直平分EQ,有EP=PQ.

∵PQ=PD+DQ,

∴EP=AE+PD.(2)△PDM的周长保持不变,证明:设AM=xcm,则DM=(4-x)cm,Rt△EAM中,由,,∵∠AME+∠AEM=90°,∠AME+∠PMD=90°,∴∠AEM=∠PMD,又∵∠A=∠D=90°,∴△PDM∽△MAE,∴,即,∴,∴△PDM的周长保持不变.20、(1)见解析;(2).【解析】

(1)根据勾股定理以及逆定理解答即可;

(2)根据三角形的面积公式解答即可.【详解】解:(1)由勾股定理得,AB2+BC2=65=AC2△ABC为直角三角形;(2)作高BD,由得,解得,BD=点B到AC的距离为.【点睛】考查勾股定理问题,关键是根据勾股定理以及逆定理解答.21、(1)补图见解析(2)6;6;6;(3)4500本.【解析】

(1)根据题意列式计算得到D类书的人数,补全条形统计图即可;(2)根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数;(3)用捐款平均数乘以总人数即可.【详解】(1)捐D类书的人数为:30-4-6-9-3=8,补图如图所示;(2)众数为:6中位数为:6平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;(3)750×6=4500,即该单位750名职工共捐书约4500本.【点睛】主要考查了中位数,众数,平均数的求法,条形统计图的画法,用样本估计总体的思想和计算方法;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.22、(1)m=2,B(0,2);(2)C(0,-1)或(0,-3).【解析】

(1)依据一次函数图象上点的坐标特征,即可得到m的值和点B的坐标;(2)依据点C在y轴上,且△ABC的面积是1,即可得到BC=1,进而得出点C的坐标.【详解】(1)∵直线y=x+b与直线y=x交于点A(m,1),∴m=1,∴m=2,∴A(2,1),代入y=x+b,可得×2+b=1,∴b=-2,∴B(0,-2).(2)点C(0,-1)或C(0,-3).理由:∵△ABC的面积是1,点C在y轴上,∴|BC|×2=1,∴|BC|=1,又∵B(0,-2),∴C(0,-1)或C(0,-3).【点睛】本题考查一次函数的交点问题以及三角形的面积,解答本题的关键是明确题意,找出所求问题需要的条件.23、(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.【解析】试题分析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.试题解析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+1.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤2.∵在w=10m+1中,k=10>0,∴w的值随m的增大而增大,∴当m=2时,w取最大值,最大值为10×2+1=120,∴当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.考点:一次函数的应用,二元一次方程组的应用,解一元一次不等式.24、(1)见解析;(2)∠1=64°.【解析】

(1)(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠BCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)CE平分∠BCD得∠ECB=∠ECD,进而得到∠1=∠ECD,再由∠D=∠B=52°,运用三角形内角和,即可求解.【详解】解:(1)证明:∵四边形ABCD是平行四边形∴AB=CD∠B=∠DAD∥BC∴∠1=∠ECB∵AF∥CE∴∠AFB=∠ECB∴∠1=∠AFB∴△ABF≌△CDE(AAS)(2)∵CE平分∠BCD∴∠ECB=∠ECD∵∠1=∠ECB(已证)∴∠1=∠ECD∵∠B=52°∴∠D=∠B=52°∴∠1=∠ECD=【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.25、(1)9或5;(2)①见解析,②见解析【解析】

(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.【详解】解:(1)①如图,当点分别在上时,面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论