




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年安徽省六安市天堂寨初级中学数学八年级下册期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比(黄金分割比0.618)著名的“断臂维纳斯”便是如此.此外最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比.若某人满足上述两个黄金分割比例,且腿长为103cm,头顶至脖子下端的长度为25cm,则其身高可能是()A.165cm B.170cm C.175cm D.180cm2.如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=,则BC的长是()A. B.2 C.2 D.43.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A. B. C. D.4.如图,在中,平分,交于点,平分,交于点,,,则长为()A. B. C. D.5.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为A. B. C. D.6.矩形ABCD中,已知AB=5,AD=12,则AC长为()A.9 B.13 C.17 D.207.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B.且 C.且 D.8.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1 C.k≥﹣1且k≠0 D.k>﹣19.如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A. B.10C. D.1210.若,则的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.一次函数的图象过点,且y随x的增大而减小,则m=_______.12.在英文单词believe中,字母“e”出现的频率是_______.13.分解因式:___.14.(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.15.如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则可添加的条件为_______________________________.(填一个即可)
16.如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为_______.17.在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2﹣b2,根据这个规则,方程(x+1)﹡3=0的解为_____.18.顺次连接矩形ABCD各边中点,所得四边形形状必定是__________.三、解答题(共66分)19.(10分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC的顶点均在格点上.(不写作法)(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出B1的坐标;(2)再把△A1B1C1绕点C1顺时针旋转90°,得到△A2B2C1,请你画出△A2B2C1,并写出B2的坐标.20.(6分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.21.(6分)某工厂从外地购得A种原料16吨,B种原料13吨,现计划租用甲、乙两种货车6辆将购得的原料一次性运回工厂,已知一辆甲种货车可装2吨A种原料和3吨B种原料;一辆乙种货车可装3吨A种原料和2吨B种原料,设安排甲种货车x辆.(1)如何安排甲、乙两种货车?写出所有可行方案;(2)若甲种货车的运费是每辆500元,乙种货车的运费是每辆350元,设总运费为W元,求W(元)与x(辆)之间的函数关系式;(3)在(2)的前提下,当x为何值时,总运费最少,此时总运费是多少元?22.(8分)矩形纸片ABCD,AB=4,BC=12,E、F分别是AD、BC边上的点,ED=1.将矩形纸片沿EF折叠,使点C落在AD边上的点G处,点D落在点H处.(1)矩形纸片ABCD的面积为(2)如图1,连结EC,四边形CEGF是什么特殊四边形,为什么?(1)M,N是AB边上的两个动点,且不与点A,B重合,MN=1,求四边形EFMN周长的最小值.(计算结果保留根号)23.(8分)已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形并找出一对全等三角形:△_≌△_,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?24.(8分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.25.(10分)如图,已知点M,N分别是平行四边形ABCD的边AB,DC的中点.求证:四边形AMCN为平行四边形.26.(10分)某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:应试者面试笔试甲8690乙9283(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
以腿长103cm视为从肚脐至足底的高度,求出身高下限;)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限,由此确定身高的范围即可得到答案.【详解】(1)以腿长103cm视为从肚脐至足底的高度,求出身高下限:,(2)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限:①咽喉至肚脐:cm,②肚脐至足底:cm,∴身高上限为:25+40+105=170cm,∴身高范围为:,故选:B.【点睛】此题考查黄金分割,正确理解各段之间的比例关系,确定身高的上下限,即可得到答案.2、B【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.【详解】∵四边形ABCD是平行四边形,∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==1.故选:B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.3、C【解析】试题解析:A、不是轴对称图形,也不是中心对称图形;
B、不是轴对称图形,不是中心对称图形;
C、是轴对称图形,也是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选C.点睛:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【解析】
先证明AB=AF,DC=DE,再根据EF=AF+DE﹣AD,求出AD,即可得出答案.【详解】∵四边形是平行四边形∴,,∥∵平分,平分∴,∴,∴∴∴故选A【点睛】本题考查了平行四边形的性质,考点涉及平行线性质以及等角对等边等知识点,熟练掌握平行四边形的性质是解答本题的关键.5、B【解析】【分析】直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.【详解】,,,▱ABCD的对角线AC与BD相交于点O,E是边CD的中点,是的中位线,,,故选B.【点睛】本题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.6、B【解析】
由勾股定理可求出BD长,由矩形的性质可得AC=BD=1.【详解】如图,矩形ABCD中,∠BAD=90°,AB=5,AD=12,∴1,∴AC=BD=1.故选B.【点睛】本题考查了矩形的性质,勾股定理,求出DB的长是解答本题的关键.7、B【解析】
由方程根的情况,根据判别式可得到关于的不等式,则可求得取值范围;【详解】解:因为一元二次方程有两个不相等的实数根,所以>0,且,所以>0,解得:<,又因为,所以,所以且,故选B.【点睛】本题考查利用一元二次方程的根的判别式求字母的取值范围,同时考查一元二次方程定义中二次项系数不为0,掌握知识点是解题关键.8、B【解析】
讨论:①当k=0时,方程化为一次方程,方程有一个实数解;当k≠0时,方程为二次方程,Δ≥0,然后求出两个中情况下的的公共部分即可.【详解】解:①当k=0时,方程化为-3x-=0,解得x=;当k≠0时,Δ=≥0,解得k≥-1,所以k的范围为k≥-1.故选B.【点睛】本题主要考查一元二次方程根的判别式,注意讨论k的取值.9、B【解析】
点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【详解】解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,
∵直线AB的解析式为y=-x+7,
∴直线CC″的解析式为y=x-1,
由解得,
∴直线AB与直线CC″的交点坐标为K(4,3),
∵K是CC″中点,C(1,0),设C″坐标为(m,n),∴,解得:
∴C″(7,6).
连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,
△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″=故答案为1.【点睛】本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.10、D【解析】
根据分式的概念可知使分式有意义的条件为a≠0,根据二次根式被开方数大于等于0可知,使该等式成立的条件为a>0且1-a≥0,故a的取值范围是0<a≤1.【详解】解:∵,∴,∴,故选:D.【点睛】本题主要考査二次根式的概念和分式的概念,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方.二、填空题(每小题3分,共24分)11、【解析】
根据一次函数的图像过点,可以求得m的值,由y随x的增大而减小,可以得到m<0,从而可以确定m的值.【详解】∵一次函数的图像过点,∴,解得:或,∵y随x的增大而减小,∴,∴,故答案为:.【点睛】本题考查一次函数图像上点的坐标特征、一次函数的性质,解答此类问题的关键是明确一次函数的性质,利用一次函数的性质解答问题.12、【解析】
先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.【详解】∵英文单词believe共有7个字母,其中有3个e,∴字母“e”出现的频率是;故答案为:.【点睛】此题考查频数与频率,解题关键在于掌握频率的计算公式即可.13、【解析】
直接利用平方差公式分解因式得出即可.【详解】,,.故答案为:.【点睛】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14、2【解析】
解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合.可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.15、AD∥BC(答案不唯一)【解析】
根据两组对边分别平行的四边形是平行四边形可得添加的条件为.【详解】解:四边形ABCD中,,要使四边形ABCD为平行四边形,则可添加的条件为,故答案为.【点睛】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.16、或【解析】
如图,作GH⊥BC于H.则四边形ABHG是矩形.G是AD的三等分点,推出AG=4或8,证明EG=FG=FB,设EG=FG=FB=x,分两种情形构建方程即可解决问题.【详解】解:如图,作GH⊥BC于H.则四边形ABHG是矩形.
∵G是AD的三等分点,
∴AG=4或8,
由翻折可知:FG=FB,∠EFB=∠EFG,设FG=FB=x.
∵AD∥BC,
∴∠FEG=∠EFB=∠GFE,
∴EG=FG=x,
在Rt△FGH中,∵FG2=GH2+FH2,
∴x2=22+(4-x)2或x2=22+(8-x)2
解得:x=或,
故答案为或.【点睛】本题考查翻折变换,矩形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.17、x=2、-4【解析】
先根据新定义得到,再移项得,然后利用直接开平方法求解.【详解】(x+1)﹡3=0,,,,所以、.故答案为:、.【点睛】本题考查了解一元二次方程-直接开平方法:如果方程化成的形式,那么可得,如果方程能化成()的形式,那么.18、菱形【解析】【分析】连接BD,AC,根据矩形性质和三角形中位线性质,可证四条边相等,可得菱形.【详解】如图连接BD,AC由矩形性质可得AC=BD,因为,E,F,G,H是各边的中点,所以,根据三角形中位线性质可得:HG=EF=BD,EH=FG=AC所以,EG=EF=EF=FG,所以,所得四边形EFGH是菱形.故答案为:菱形【点睛】本题考核知识点:矩形性质,菱形判定.解题关键点:由三角形中位线性质证边相等.三、解答题(共66分)19、(1)B1的坐标(﹣5,4);(2)B2的坐标(﹣1,2).【解析】
(1)作出各点关于原点的对称点,再顺次连接,并写出B1的坐标即可;(2)根据图形旋转的性质画出△A2B2C2,并写出B2的坐标即可.【详解】(1)如图,△A1B1C1即为所求,由图可知B1的坐标(﹣5,4);(2)如图,△A2B2C2即为所求,由图可知B2的坐标(﹣1,2).【点睛】考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.20、(1)5立方米;(2)y=4x+3;(3)1,11.【解析】【分析】(1)用体积变化量除以时间变化量即可求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(2)比例系数k=4即为两个口同时打开时水泥储存罐容量的增加速度,则输出速度为5﹣4=1,再根据总输出量为8求解即可.【详解】(1)每分钟向储存罐内注入的水泥量为15÷3=5立方米;(2)设y=kx+b(k≠0),把(3,15)(5.5,25)代入,则有,解得:,∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3;(3)由(2)可知,输入输出同时打开时,水泥储存罐的水泥增加速度为4立方米/分,则每分钟输出量为5﹣4=1立方米;只打开输出口前,水泥输出量为5.5﹣3=2.5立方米,之后达到总量8立方米需输出8﹣2.5=5.5立方米,用时5.5分钟∴从打开输入口到关闭输出口共用的时间为:5.5+5.5=11分钟,故答案为1,11.【点睛】本题考查了一次函数的应用,解题的关键是读懂图象、弄清题意、熟练应用一次函数的图象和性质以及在实际问题中比例系数k代表的意义.21、(1)有两种可行方案,方案一:安排甲种货车1辆,乙种货车5辆,方案二:安排甲种货车2辆,乙种货车4辆;(2)x为1时,总运费最少,此时总运费是2250元.【解析】【分析】(1)依题意得,解不等式组即可;(2)直接根据数量关系可列W=500x+350(6−x)=150x+2100;(3)结合(1)和(2),当x最小时,运费最少.【详解】(1)由题意可得,,解得,1⩽x⩽2,∴有两种可行方案,方案一:安排甲种货车1辆,乙种货车5辆,方案二:安排甲种货车2辆,乙种货车4辆;(2)由题意可得,W=500x+350(6−x)=150x+2100,即W(元)与x(辆)之间的函数关系式是W=150x+2100;(3)由(2)知,W=150x+2100,∵1⩽x⩽2,∴当x=1时,W取得最小值,此时W=2250,答:x为1时,总运费最少,此时总运费是2250元.【点睛】此题考核知识点:列不等式组解应用题;求函数的最小值.解题的关键是:根据题意列出不等式组,并求出解集;分析函数解析式中函数值与自变量之间的关系,从而轻易确定函数最小值.22、(1)2;(2)四边形CEGF是菱形,理由见详解;(1)四边形EFMN周长的最小值为.【解析】
(1)矩形面积=长×宽,即可得到答案,(2)利用对角线互相垂直平分的四边形是菱形进行证明,先证对角线相互垂直,再证对角线互相平分.(1)明确何时四边形的周长最小,利用对称、勾股定理、三角形相似,分别求出各条边长即可.【详解】解:(1)S矩形ABCD=AB•BC=12×4=2,故答案为:2.(2)四边形CEGF是菱形,证明:连接CG交EF于点O,由折叠得:EF⊥CG,GO=CO,∵ABCD是矩形,∴AD∥BC,∴∠OGE=∠OCF,∠GEO=∠CFO∴△GOE≌△COF(AAS),∴OE=OF∴四边形CEGF是菱形.因此,四边形CEGF是菱形.(1)作F点关于点B的对称点F1,则NF1=NF,当NF1∥EM时,四边形EFMN周长最小,设EC=x,由(2)得:GE=GF=FC=x,在Rt△CDE中,∵ED2+DC2=EC2,∴12+42=EC2,∴EC=5=GE=FC=GF,在Rt△GCD中,,∴OC=GO=,在Rt△COE中,,∴EF=2OE=,当NF1∥EM时,易证△EAM∽△F1BN,∴,设AM=y,则BN=4-1-y=1-y,∴,解得:,此时,AM=,BN=,由勾股定理得:,,∴四边形EFMN的周长为:故四边形EFMN周长的最小值为:.【点睛】考查矩形的性质、菱形的判定和性质、对称及三角形相似的性质和勾股定理等知识,综合性很强,利用的知识较多,是一道较难得题目.23、(1)△DOE≌△BOF;证明见解析;(2)绕点O旋转180°后得到或以点O为中心作对称变换得到.【解析】
(1)本题要证明如△ODE≌△BOF,已知四边形ABCD是平行四边形,具备了同位角、内错角相等,又因为OD=OB,可根据AAS能判定△DOE≌△BOF;(2)平行四边形是中心对称图形,这对全等三角形中的一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版房产中介公司品牌战略联盟合同
- 二零二五年度跨境电商法律顾问合作协议
- 二零二五年度灾害预警机井承包与维护协议
- 2025版高空作业大白施工安全协议
- 程一波消防操作员课件
- 2025版带购房协议转让的房产交易税费缴纳承诺合同
- 高速电梯安装工程劳务分包及运营维护合同
- 二建挂靠合同效力审查及合同备案手续
- 淀粉类产品市场推广与品牌合作协议
- 二手房买卖交易中房屋质量保修服务协议
- 刚新修订《治安管理处罚法》培训
- 2025年发展对象培训班考试题库带答案
- 厨师长岗位面试问题及答案
- 农业水果储藏管理办法
- 胡麻种植技术课件
- 高压安全知识培训
- 2025年重庆市南开中学八年级英语第二学期期末综合测试试题含答案
- 2025年中国翻译机行业市场深度评估及投资策略咨询报告
- 2025年城市危旧房改造项目社会稳定风险评估与公众参与分析
- DB32-T 5090.1-2025 医院医患沟通规范 第1部分:住院
- 夜市规章制度管理制度
评论
0/150
提交评论