广东省汕尾市海丰县2024年数学八年级下册期末学业水平测试模拟试题含解析_第1页
广东省汕尾市海丰县2024年数学八年级下册期末学业水平测试模拟试题含解析_第2页
广东省汕尾市海丰县2024年数学八年级下册期末学业水平测试模拟试题含解析_第3页
广东省汕尾市海丰县2024年数学八年级下册期末学业水平测试模拟试题含解析_第4页
广东省汕尾市海丰县2024年数学八年级下册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省汕尾市海丰县2024年数学八年级下册期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如果直角三角形的边长为3,4,a,则a的值是()A.5 B.6 C. D.5或2.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为()A.3 B.1.5 C.2 D.3.等式•=成立的条件是()A. B. C. D.4.已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A. B. C. D.5.下列角度中,不能是某多边形内角和的是()A.600° B.720° C.900° D.1080°6.在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为()A.6 B.7 C.2 D.27.做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率 B.频率等于 C.概率是随机的 D.频率会在某一个常数附近摆动8.如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A.21,22 B.21,21.5 C.10,21 D.10,229.我校开展了主题为“青春·梦想”的艺术作品征集活动、从八年级某六个班中收集到的作品数量(单位:件)统计如图,则这组数据的众数、中位数、平均数依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.510.星期天晚饭后,小丽的爸爸从家里出去散步,如图描述了她爸爸散步过程中离家的距离(km)与散步所用的时间(min)之间的函数关系,依据图象,下面描述符合小丽爸爸散步情景的是()A.从家出发,休息一会,就回家B.从家出发,一直散步(没有停留),然后回家C.从家出发,休息一会,返回用时20分钟D.从家出发,休息一会,继续行走一段,然后回家二、填空题(每小题3分,共24分)11.如图,矩形纸片ABCD,AB=5,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O,F,且OP=OF,则AF的值为______.12.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.13.如图,在平面直角坐标系中,已知的直角顶点在轴上,,反比例函数在第一象限的图像经过边上点和的中点,连接.若,则实数的值为__________.14.如图,在中,角是边上的一点,作垂直,垂直,垂足分别为,则的最小值是______.15.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为__________.16.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为米.17.已知.若整数满足.则=_________.18.在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________三、解答题(共66分)19.(10分)已知与成正比例,且当时,,则当时,求的值.20.(6分)如图1,将纸片折叠,折叠后的三个三角形可拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将纸片按图2的方式折叠成一个叠合矩形,则操作形成的折痕分别是线段_______,__________;___________.(2)将纸片按图3的方式折叠成一个叠合矩形,若,,求的长;(3)如图4,四边形纸片满足,,,,,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出、的长.21.(6分)在平面直角坐标系中,一次函数的图象与轴负半轴交于点,与轴正半轴交于点,点为直线上一点,,点为轴正半轴上一点,连接,的面积为1.(1)如图1,求点的坐标;(2)如图2,点分别在线段上,连接,点的横坐标为,点的横坐标为,求与的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,如图3,连接,点为轴正半轴上点右侧一点,点为第一象限内一点,,,延长交于点,点为上一点,直线经过点和点,过点作,交直线于点,连接,请你判断四边形的形状,并说明理由.22.(8分)已知一次函数y=(1m-1)x+m-1.(1)若此函数图象过原点,则m=________;(1)若此函数图象不经过第二象限,求m的取值范围.23.(8分)耒阳市某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,喜欢“科普书籍”出现的频率为;(2)补全条形图;(3)求在扇形统计图中,喜欢“科普书籍”的所占的圆心角度数;(4)如果全校共有学生1500名,请估计该校最喜欢“科普”书籍的学生约有多少人?24.(8分)如图,矩形中,点分别在边与上,点在对角线上,,.求证:四边形是平行四边形.若,,,求的长.25.(10分)如图,ABCD中,的角平分线交AD于点E,的角平分线交于点,,,=50°.(1)求的度数;(2)求ABCD的周长.26.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段OA、折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.(1)线段OA与折线BCD中,______(填线段OA或折线BCD)表示货车离甲地的距离y与时间x之间的函数关系.(2)求线段CD的函数关系式(标出自变量x取值范围);(3)货车出发多长时间两车相遇?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

分两种情况分析:a是斜边或直角边,根据勾股定理可得.【详解】解:当a是斜边时,a=;当a是直角边时,a=所以,a的值是5或故选:D.【点睛】本题考核知识点:勾股定理,解题关键点:分两种情况分析.2、D【解析】

解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=.根据勾股定理得:,解得:x=2,∴EC=2,则S△AEC=EC•AD=.故选D.3、C【解析】根据二次根式的乘法法则成立的条件:a≥0且b≥0,即可确定.解:根据题意得:,

解得:x≥1.x≥–1,

故答案是:x≥1.

“点睛”本题考查了二次根式的乘法法则,理解二次根式有意义的条件是关键.4、D【解析】

通过点经过四边形各个顶点,观察图象的对称趋势问题可解.【详解】、选项路线都关于对角线对称,因而函数图象应具有对称性,故、错误,对于选项点从到过程中的长也存在对称性,则图象前半段也应该具有对称特征,故错误.故选:.【点睛】本题动点问题的函数图象,考查学生对动点运动过程中所产生函数图象的变化趋势判断.解答关键是注意动点到达临界前后的图象变化.5、A【解析】

利用多边形的内角和公式即可作出判断.【详解】解:∵多边形内角和公式为(n-2)×180,

∴多边形内角和一定是180的倍数.

故选:A.【点睛】本题考查多边形内角和公式,在解题时要记住多边形内角和公式,并加以应用即可解决问题.6、A【解析】

根据题意画出图形,利用勾股定理解答即可.【详解】如图,设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:,两式相加得:a2+b2=31,根据勾股定理得到斜边==1.故选A.【点睛】本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.7、D【解析】

频率是在一次试验中某一事件出现的次数与试验总数的比值。概率是某一事件所固有的性质。频率是变化的每次试验可能不同,概率是稳定值不变。在一定条件下频率可以近似代替概率。【详解】A、概率不等于频率,A选项错误;B、频率等于,B选项错误C、概率是稳定值不变,C选项错误D、频率会在某一个常数附近摆动,D选项是正确的。故答案为:D【点睛】此题主要考查了概率公式,以及频率和概率的区别。8、A【解析】

根据众数和中位数的定义求解.【详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.

故选A.【点睛】本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.9、A【解析】

根据众数、中位数的定义和加权平均数公式分别进行解答即可.【详解】解:这组数据48出现的次数最多,出现了3次,则这组数据的众数是48;

把这组数据从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;

这组数据的平均数是:(47×2+48×3+50)÷6=48,

故选:A.【点睛】本题考查了众数、中位数和平均数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).10、D【解析】

利用函数图象,得出各段的时间以及离家的距离变化,进而得出答案.【详解】由图象可得出:小丽的爸爸从家里出去散步10分钟,休息20分钟,再向前走10分钟,然后利用20分钟回家.

故选:D.【点睛】本题考查了函数的图象,解题的关键是要看懂图象的横纵坐标所表示的意义,然后再进行解答.二、填空题(每小题3分,共24分)11、【解析】

根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x的值,即可得AF的长.【详解】解:∵将△CDP沿DP折叠,点C落在点E处,∴DC=DE=5,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE-EF=5-x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC-BP=3-x,∴AF=AB-BF=2+x.在Rt△DAF中,AF2+AD2=DF2,∴(2+x)2+32=(5-x)2,∴x=∴AF=2+=故答案为:【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.12、【解析】

先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为:.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.13、【解析】

先根据含30°的直角三角形得出点B和点D的坐标,再根据△OAC面积为4和点C在反比例函数图象上得出k.【详解】在Rt△OAB中,∠B=30°,∴可设OA=a,则AB=OA=a,∴点B的坐标为(a,a),∴直线OB的解析是为y=x∵D是AB的中点∴点D的坐标为(a,a)∴k=a2又∵S△OAC=4,∴OA•yc=4,即•a•yc=4,∴yc=∴C(,)∴k=•=∴∴a2=16,∴k=a2=8.故答案为8.【点睛】本题主要考查反比例函数的图象和性质,熟练运用30°直角三角形的性质与反比例函数k的几何意义是解题的关键.14、【解析】

根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,四边形AFPE是矩形,要使EF最小,只要AP最小即可,过点A作于P,此时AP最小,在直角三角形中,由勾股定理得:BC=5,由三角形面积公式得:,即,故答案为:.【点睛】本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.15、【解析】

根据勾股定理,可得AC的长,根据圆的性质,可得答案.【详解】由题意得故可得,又∵点B的坐标为2∴M点的坐标是,故答案为:.【点睛】此题考查勾股定理,解题关键在于结合实数与数轴解决问题.16、1【解析】试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.解:由题意可得:AB=200m,∠A=30°,则BC=AB=1(m).故答案为:1.17、2【解析】

根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.【详解】解:,∴解得:.∵为整数,.∴∴故答案为:2;【点睛】本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.18、20或22【解析】

根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.【详解】根据题意可得矩形的长为7当形成的直角等腰三角形的直角边为3时,则矩形的宽为3当形成的直角等腰三角形的直角边为4时,则矩形的宽为4矩形的宽为3或4周长为或故答案为20或22【点睛】本题主要考查等腰直角三角形的性质,关键在于确定宽的长.三、解答题(共66分)19、12.【解析】

利用正比例函数的定义,设y=k(x-2),然后把已知的一组对应值代入求出k即可得到y与x的关系式;再将x=5代入已求解析式,从而可求出y的值.【详解】设,把代入得,解得,∴,即,当时,.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.20、(1)AE,GF,1:2;(2)13;(3)AD=1,BC=7;

【解析】

(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=S▱ABCD,即可得出答案;

(2)由矩形的性质和勾股定理求出FH,即可得出答案;

(3)由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM-GM=1,BC=BM+CM=7;【详解】解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;

由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,

∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,

∴S矩形AEFG=S▱ABCD,

∴S矩形AEFG:S▱ABCD=1:2;

故答案为:AE,GF,1:2;

(2)∵四边形EFGH是矩形,

∴∠HEF=90°,

∴FH==13,

由折叠的性质得:AD=FH=13;

(3)图5所示:如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,

∵四边形EFMB是叠合正方形,

∴BM=FM=4,

∴GM=CM==3,

∴AD=BG=BM-GM=1,BC=BM+CM=7;【点睛】此题考查折叠的性质,正方形的性质,勾股定理,梯形面积,解题关键在于掌握折叠的性质.21、(1)B(6,0);(2)d=;(3)四边形是矩形,理由见解析【解析】

(1)作DL⊥y轴垂足为L点,DI⊥AB垂足为I,证明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB•DI=1,求得OB=AB−AO=8−2=6,即可求B坐标;

(2)设∠MNB=∠MBN=α,作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;证明四边形MPKQ为矩形,再证明△MNP≌△MQB,求出BD的解析式为y=−3x+18,MQ=d,把y=d代入y=−3x+18得d=−3x+18,表达出OQ的值,再由OQ=OK+KQ=t+d,可得d=−;

(3)作NW⊥AB垂足为W,证明△ANW≌△CAO,根据边的关系求得N(4,2);延长NW到Y,使NW=WY,作NS⊥YF,再证明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;设YS=a,FY=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);设GF交y轴于点T,设FN的解析式为y=px+q

(p≠0)把F(10,0)N(4,2)代入即可求出直线FN的解析式,联立方程组得到G点坐标;把G点代入得到y=x+3,可知R(4,0),证明△GRA≌△EFR,可得四边形AGFE为平行四边形,再由∠AGF=180°−∠CGF=90°,可证明平行四边形AGFE为矩形.【详解】解:(1)令x=0,y=6,令y=0,x=−2,

∴A(−2,0),B(0,6),

∴AO=2,CO=6,

作DL⊥y轴垂足为L点,DI⊥AB垂足为I,

∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,

∴△DLC≌△AOC(AAS),

∴DL=AO=2,

∴D的横坐标为2,

把x=2代入y=3x+6得y=12,

∴D(2,12),

∴DI=12,

∵S△ABD=AB•DI=1,

∴AB=8;

∵OB=AB−AO=8−2=6,

∴B(6,0);

(2)∵OC=OB=6,

∴∠OCB=∠CBO=45°,

∵MN=MB,

∴设∠MNB=∠MBN=α,

作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;

∴∠NKB=∠MQK=∠MPK=90°,

∴四边形MPKQ为矩形,

∴NK∥CO,MQ=PK;

∵∠KNB=90°−45°=45°,

∴∠MNK=45°+α,∠MBQ=45°+α,

∴∠MNK=∠MBQ,

∵MN=MB,∠NPM=∠MQB=90°,

∴△MNP≌△MQB(AAS),

∴MP=MQ;

∵B(6,0),D(2,12),

∴设BD的解析式为y=kx+b(k≠0),

∴,解得:k=-3,b=18,

∴BD的解析式为y=−3x+18,

∵点M的纵坐标为d,

∴MQ=MP=d,把y=d代入y=−3x+18得d=−3x+18,

解得x=,

∴OQ=;

∵N的横坐标为t,

∴OK=t,

∴OQ=OK+KQ=t+d,

∴=t+d,

∴d=;

(3)作NW⊥AB垂足为W,

∴∠NWO=90°,

∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,

∵∠ACO=∠NAO,

∴∠ACN=∠ANC,

∴AC=AN,

又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,

∴△ANW≌△CAO(AAS),

∴AO=NW=2,

∴WB=NW=2,

∴OW=OB−WB=6−2=4,

∴N(4,2);

延长NW到Y,使NW=WY,∴△NFW≌△YFW(SAS)∴NF=YF,∠NFW=∠YFW,

又∵∠HFN=2∠NFO,

∴∠HFN=∠YFN,

作NS⊥YF,

∵∠FH⊥NH,

∴∠H=∠NSF=90°,

∵FN=FN,

∴△FHN≌△FSN(AAS),

∴SF=FH=,NY=2+2=4,

设YS=a,FY=FN=a+,

在Rt△NYS和Rt△FNS中:NS2=NY2−YS2;NS2=FN2−FS2;NY2−YS2=FN2−FS2,

∴42−a2=(a+)2-()2,

解得a=

∴FN=;

在Rt△NWF中WF=,

∴FO=OW+WF=4+6=10,

∴F(10,0),

∴AW=AO+OW=2+4=6,

∴AW=FW,

∵NW⊥AF,

∴NA=NF,

∴∠NFA=∠NAF,

∵∠ACO=∠NAO,

∴∠NFA=∠ACO,

设GF交y轴于点T,∠CTF=∠ACO+∠CGF=∠COF+∠GFO,

∴∠CGF=∠COF=90°,

设FN的解析式为y=px+q

(p≠0),把F(10,0)N(4,2)代入y=px+q

得,解得,∴,∴联立,解得:,∴,

把G点代入y=mx+3,得,得m=,

∴y=x+3,

令y=0得0=x+3,x=4,

∴R(4,0),

∴AR=AO+OR=2+4=6,RF=OF−OR=10−4=6,

∴AR=RF,

∵FE∥AC,

∴∠FEG=∠AGE,∠GAF=∠EFA,

∴△GRA≌△EFR(AAS),

∴EF=AG,

∴四边形AGFE为平行四边形,

∵∠AGF=180°−∠CGF=180°−90°=90°,

∴平行四边形AGFE为矩形.【点睛】本题是一次函数的综合题;灵活应用全等三角形的判定和性质以及勾股定理,熟练掌握平行四边形和矩形的判定,会待定系数法求函数解析式是解题的关键.22、(1)1;(1)-<m≤1.【解析】

(1)把坐标原点代入函数解析式进行计算即可得解;(1)根据图象不在第二象限,k>0,b0列出不等式组求解即可.【详解】(1)∵函数的图象经过原点,∴m-1=0,解得m=1;(1)∵函数的图象不过第二象限,∴,由①得,m>-,由②得,m1,所以,-<m1.【点睛】本题考查了两直线平行的问题,一次函数与系数的关系,一次函数图象上点的坐标特征,综合题但难度不大,熟记一次函数的性质是解题的关键.23、(1)0.25;(2)见解析;(3)90°;(4)375人【解析】

(1)根据扇形图可知“科普书籍”出现的频率为1-其他的百分比-文艺的百分比-体育的百分比求解即可;(2)选取其他、文艺或体育任意条形图数据结合扇形百分比求出全体人数,再根据(1)科普的频数即可确定人数,据此补全图形即可;(3)根据喜欢“科普书籍”的所占圆心角度数=喜欢“科普书籍”的百分比×360°求解即可;(4)根据该校最喜欢“科普”书籍的学生数=该校学生数×喜欢“科普”的百分比求解即可.【详解】解:(1)“科普书籍”出现的频率=1-20%-15%-40%=25%=0.25,故答案为0.25;(2)调查的全体人数=人,所以喜欢科普书籍的人数=人,如图;(3)喜欢“科普书籍”的所占的圆心角度数=0.25×360°=90°(4)该校最喜欢“科普”书籍的学生约有0.25×1500=375人.【点睛】本题考查的是统计相关知识,能够结合扇形图和条形图共解问题是解题的关键.24、(1)证明见详解;(2)1【解析】

(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;

(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【详解】解:(1)∵矩形ABCD中,AB∥CD,

∴∠FCH=∠EAG,

又∵CD=AB,BE=DF,

∴CF=AE,

又∵CH=AG,

∴△AEG≌△CFH,

∴GE=FH,∠CHF=∠AGE,

∴∠FHG=∠EGH,

∴FH∥GE,

∴四边形EGFH是平行四边形;(2)如图,连接EF,AF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论