版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省(大同)2024年八年级数学第二学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,延长矩形ABCD的边BC至点E,使CEBD,连接AE,若∠ADB40,则∠E的度数是()A.20 B.25 C.30 D.352.用同一种规格的下列多边形瓷砖不能镶嵌成平面图案的是()A.三角形 B.正方形 C.正五边形 D.正六边形3.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交边于点,现分别以为圆心,以大于的长为半径画弧,两弧交于点,作射线交边于点,若则的面积是()A.10 B.20 C.30 D.404.如图,四边形中,,,,,则四边形的面积是().A. B. C. D.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm6.已知一次函数,随的增大而减小,则的取值范围是()A. B. C. D.7.正方形、、…按如图所示的方式放置.点、、…和点、、…别在直线和轴上,则点的坐标是()A. B. C. D.8.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>59.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.若平行四边形的两个内角的度数之比为1:5,则其中较小的内角是()A. B. C. D.11.下面四个手机的应用图标中,是中心对称图形的是()A. B. C. D.12.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.二、填空题(每题4分,共24分)13.已知中,,角平分线BE、CF交于点O,则______.14.如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点则PM+PN的最小值是_15.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲55149191135乙55151110135某同学根据上表分析得出如下结论:(l)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀(每分钟输入汉字超过150个为优秀)的人数多于甲班优秀的人数;(3)甲班的成绩波动比乙班的成绩波动小、上述结论中正确的是______.(填序号)16.若二次函数y=ax2+bx的图象开口向下,则a可以为_________(写出一个即可).17.一个正方形的面积为4,则其对角线的长为________.18.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.三、解答题(共78分)19.(8分)如图,已知菱形ABCD的对角线AC、BD交于点O,DB=2,AC=4,求菱形的周长.20.(8分)阅读材料:小华像这样解分式方程解:移项,得:通分,得:整理,得:分子值取0,得:x+5=0即:x=﹣5经检验:x=﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是;(2)试用小华的方法解分式方程21.(8分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某单位计划在室内安装空气净化装置,需购进A,B两种设备,每台B种设备价格比每台A种设备价格多700元,花3000元购买A种设备和花7200元购买B种设备的数量相同.(1)求A种、B种设备每台各多少元?(2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于17000元,求A种设备至少要购买多少台?22.(10分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?23.(10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b,已知T(1,1)=2.5,T(1,﹣2)=1.(1)求a,b的值;(2)若关于m的不等式组恰好有2个整数解,求实数P的取值范围.24.(10分)如图,在中,为的中点,,.动点从点出发,沿方向以的速度向点运动;同时动点从点出发,沿方向以的速度向点运动,运动时间是秒.(1)用含的代数式表示的长度.(2)在运动过程中,是否存在某一时刻,使点位于线段的垂直平分线上?若存在,求出的值;若不存在,请说明理由.(3)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.(4)是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.25.(12分)计算:2+6-5+26.在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.(1)如图1,当点与点重合时,的形状是_____________________;(1)当点在点M的左侧时,如图1.①依题意补全图1;②判断的形状,并加以证明.
参考答案一、选择题(每题4分,共48分)1、A【解析】
连接,由矩形性质可得、,知,而,可得度数.【详解】连接,四边形是矩形,,,且,,又,,,,,即.故选.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.2、C【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐项判断即可.【详解】解:A、任意三角形的内角和是180°,放在同一顶点处6个即能镶嵌成平面图案;B、正方形的每个内角是90°,能整除360°,即能镶嵌成平面图案;C、正五边形每个内角是(5-2)×180°÷5=108°,不能整除360°,故不能镶嵌成平面图案;D、正六边形每个内角是(6-2)×180°÷6=120°,能整除360°,即能镶嵌成平面图案,故选:C.【点睛】本题考查平面镶嵌,围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角即能镶嵌成平面图案.3、B【解析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DE,再由三角形的面积公式可得出结论.【详解】由题意可知AP为∠CAB的平分线,过点D作DE⊥AB于点E,∵∠C=90°,CD=1,∴CD=DE=1.∵AB=10,∴S△ABD=AB•DE=×10×1=2.故选B.【点睛】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.4、A【解析】如下图,分别过、作的垂线交于、,∴,∵,∴,在中,,∴.故选A.5、C【解析】
利用勾股定理列式求出AC,再根据矩形的对角线互相平分且相等求出OA=OD=AC,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得EF=OD,再求出AF,AE,然后根据三角形的周长公式列式计算即可得解.【详解】由勾股定理得,AC==10cm∵四边形ABCD是矩形∴OA=OD=AC=×10=5cm∵点E、F分别是AO、AD的中点∴EF=OD=cmAF=×8=4cmAE=OA=cm∴△AEF的周长=+4+=9cm.故选C.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,矩形的性质,勾股定理,熟记定理与性质是解题的关键.6、B【解析】
根据一次函数的图像性质即可求解.【详解】依题意得k-2<0,解得故选B.【点睛】此题主要考查一次函数的性质,解题的关键是熟知k的性质.7、B【解析】
利用一次函数图象上点的坐标特征及正方形的性质可得出点的坐标,根据点的坐标的变化可找出变化规律“点的坐标为(n为正整数)”,再代入n=2019即可得出的坐标,然后再将其横坐标减去纵坐标得到的横坐标,和的纵坐标相同.【详解】解:当时,,
∴点A1的坐标为(0,1).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1),点C1的坐标为(1,0).
当时,,
∴点A2的坐标为(1,2).
∵A2B2C2C1为正方形,
∴点B2的坐标为(3,2),点C2的坐标为(3,0).
同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,
∴点的坐标为(n为正整数),
∴点的坐标为,∴点的坐标为,即为.
故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.8、B【解析】试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.9、C【解析】试题分析:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.考点:一次函数图象与系数的关系.10、A【解析】
根据平行四边形的性质即可求解.【详解】设较小的角为x,则另一个角为5x,∵平行四边形的对角互补,∴x+5x=180°,解得x=30°,故选A【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对角互补.11、D【解析】
根据中心对称图形的定义即可求解.【详解】由图可知D为中心对称图形,故选D.【点睛】此题主要考查中心对称图形的定义,解题的关键是熟知中心对称图形的特点.12、B【解析】
根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得
y=30-5t,
∵y≥0,t≥0,
∴30-5t≥0,
∴t≤6,
∴0≤t≤6,
∴y=30-5t是降函数且图象是一条线段.
故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.二、填空题(每题4分,共24分)13、【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.14、1【解析】试题分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,而由已知可得AB=1∴AE=BN,∵四边形ABCD是菱形,∴AE∥BN,∴四边形AENB为平行四边形,∴EN=AB=1,∴PM+PN的最小值为1.考点:轴对称—最短路径问题点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键15、(1),(2).【解析】
平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】解:从表中可知,平均字数都是135,(1)正确;
甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;
甲班的方差大于乙班的,则说明乙班的波动小,所以(3)错误.
(1)(2)正确.
故答案为:(1)(2).【点睛】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.16、a=−2(答案不唯一)【解析】
由图象开口向下,可得a<2.【详解】解:∵图象开口向下,∴a<2,∴a=−2,(答案不唯一).故答案为:−2.【点睛】本题考查了二次函数的性质,注意二次函数图象开口方向与系数a的关系.17、【解析】
已知正方形的面积,可以求出正方形的边长,根据正方形的边长可以求出正方形的对角线长.【详解】如图,∵正方形ABCD面积为4,∴正方形ABCD的边长AB==2,根据勾股定理计算BD=.故答案为:.【点睛】本题考查了正方形面积的计算,考查了勾股定理的运用,计算正方形的边长是解题的关键.18、3【解析】
根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系,求得最小值.【详解】设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+1.∵4>0∴当t=3s时,S取得最小值.【点睛】考点:二次函数的应用.三、解答题(共78分)19、【解析】
由在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,可求得OA与OB的长,AC⊥BD,然后由勾股定理求得AB的长,继而求得答案.【详解】解:∵四边形ABCD是菱形,∴OA=AC═×4=2,OB=BD=×2=1,AC⊥BD,∴AB==,∴菱形的周长为4.【点睛】此题考查了菱形的性质.注意菱形的对角线互相平分且垂直且互相平分定理的应用是解此题的关键.20、(1)分式的值为1即分子为1且分母不为1.(2)分式方程无解.【解析】
(1)根据分式的值为1即分子为1且分母不为1可得;(2)移项后,通分、根据分式的加减法则计算左边,再由(1)中结论得出关于x的方程,解之求得x的值,最后检验即可得.【详解】解:(1)小华这种解分式方程的新方法,主要依据是分式的值为1即分子为1且分母不为1,故答案为:分式的值为1即分子为1且分母不为1.(2),,,则﹣4(x+2)=1,解得:x=﹣2,检验:x=﹣2时,分母为1,分式无意义,所以x=﹣2是增根,原分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21、(1)每台A种设备500元,每台B种设备1元;(2)A种设备至少要购买2台.【解析】
(1)设每台A种设备x元,则每台B种设备(x+700)元,根据数量=总价÷单价结合花3000元购买A种设备和花7200元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购买A种设备m台,则购买B种设备(20−m)台,根据总价=单价×数量结合总费用不高于17000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.【详解】(1)设每台A种设备x元,则每台B种设备(x+700)元,根据题意得:,解得:x=500,经检验,x=500是原方程的解,∴x+700=1.答:每台A种设备500元,每台B种设备1元;(2)设购买A种设备m台,则购买B种设备(20﹣m)台,根据题意得:500m+1(20﹣m)≤17000,解得:m≥2.答:A种设备至少要购买2台.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,正确的理解题意是解题的关键.22、(1)14000,13200;(2)y=60x+1.(3)200.【解析】
试题分析:(1)方案一中,总费用y=8000+50x,代入x=120求得答案;由图可知方案二中,当x=120时,对应的购票总价为13200元;(2)分段考虑当0<x≤100时,当x≥100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;(3)由(1)(2)的解析式建立不等式,求得答案即可.试题解析:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0<x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=ax+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+1.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x≤60x+1,解得x≥200,所以至少买200张票时选择方案一比较合算.【点睛】考点:一次函数的应用.23、(1)a,b的值分别为3和2;(2)实数P的取值范围是≤p<2.【解析】
(1)根据题意把T(1,1)=2.5,T(1,﹣2)=1代入T(x,y)=即可求出a,b的值;(2)根据题意列出关于m的不等式,分别解出来再根据m有两个整数解来确定p的取值.【详解】(1)根据题意得:,①+②得:3a=9,即a=3,把a=3代入①得:b=2,故a,b的值分别为3和2;(2)根据题意得:,由①得:m≤,由②得:m>p﹣3,∴不等式组的解集为p﹣3<m≤,∵不等式组恰好有2个整数解,即m=0,1,∴﹣1≤p﹣3<0,解得≤p<2,即实数P的取值范围是≤p<2.【点睛】此题主要考查不等式组的解,解题的关键是根据题意列出不等式并根据题意解出.24、(1)CP=8-3t;(2)见解析;(3)见解析;(4)见解析.【解析】
(1)直接利用即可求解;(2)根据线段垂直平分线的性质可得,列方程求解即可;(3)根据全等三角形的性质可得若,因为,,所以只需,列方程求出的值即可;(4)若,因为,所以需满足且,即且,没有符合条件的t的值,故不存在.【详解】解:(1);(2)若点位于线段的垂直平分线上,则,即,解得.所以存在,秒时点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《新材料设计与应用》2021-2022学年第一学期期末试卷
- 吉林艺术学院《美术鉴赏》2021-2022学年第一学期期末试卷
- 吉林艺术学院《构图原理》2021-2022学年第一学期期末试卷
- 2024年公租房代理退租协议书模板
- 吉林师范大学《油画头像技法解析》2021-2022学年第一学期期末试卷
- 吉林师范大学《小组工作》2021-2022学年第一学期期末试卷
- 2022年公务员多省联考《申论》真题(陕西A卷)及答案解析
- 合拍三人合伙协议书范文范本
- 舞蹈培训班承包协议书范文范本
- 吉林师范大学《数字图像技术》2021-2022学年期末试卷
- 注塑产品成本计算
- 安全意识远离危险
- 凯乐石行业分析
- 肺的健康宣教课件
- 《坦克的发展历程》课件
- 设备维保和维保服务外包
- 2018年公安机关人民警察高级执法资格试题
- 电动汽车的电控系统
- 安全运维堡垒机部署方案
- 2024届江苏省苏州市立达中学数学七年级第二学期期末综合测试试题含解析
- 国开电大绩效与薪酬实务(河北)形考任务三参考答案
评论
0/150
提交评论