陇南市重点中学2024年八年级下册数学期末监测模拟试题含解析_第1页
陇南市重点中学2024年八年级下册数学期末监测模拟试题含解析_第2页
陇南市重点中学2024年八年级下册数学期末监测模拟试题含解析_第3页
陇南市重点中学2024年八年级下册数学期末监测模拟试题含解析_第4页
陇南市重点中学2024年八年级下册数学期末监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陇南市重点中学2024年八年级下册数学期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6 B.8 C.10 D.122.实数k、b满足kb﹥0,不等式kx<b的解集是那么函数y=kx+b的图象可能是()A. B. C. D.3.已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是(

)A. B. C. D.4.下列各式中,化简后能与合并的是()A. B. C. D.5.如图,已知在平行四边形中,是对角线上的两点,则以下条件不能判断四边形是平行四边形的是()A.B.C.D.6.下列命题中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相平分且相等的四边形是正方形7.将直线向下平移个单位长度得到新直线,则的值为()A. B. C. D.8.下列函数中,y随x增大而减小的是()A.y=x-1 B.y=-2x+3 C.y=2x-1 D.y=9.如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点,若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm10.已知点,,都在直线y=−3x+b上,则的值的大小关系是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知直角三角形的两边长分别为3、1.则第三边长为________.12.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____13.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是14.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠BAC=45°,则下列结论:①CD∥EF;②EF=DF;③DE平分∠CDF;④∠DEC=30°;⑤AB=CD;其中正确的是_____(填序号)15.若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是____.16.如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.17.平行四边形的一个内角平分线将该平行四边形的一边分为和两部分,则该平行四边形的周长为______.18.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=_______.三、解答题(共66分)19.(10分)在△ABC中,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度ɑ(0°<ɑ<180°)得到△ADE,连接CE、BD,BD与CE相交于点F。(1)求证:BD=CE(2)当ɑ等于多少度时,四边形AFDE是平行四边形?并说明理由。20.(6分)如图,在△ABC中,.请用尺规在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明21.(6分)一项工程若由甲队单独去做,刚好能如期完成;若由乙队单独做,要比规定时间多用5天才完成;若甲乙两队合做4天,余下的工程由乙队单独去做,也正好如期完成.这项工程预期几天完成?22.(8分)甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用天,且甲队单独植树天和乙队单独植树天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)甲、乙两队共同植树天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的倍.那么甲队至少再单独施工多少天?23.(8分)为参加全县的“我爱古诗词”知识竞赛,徐东所在学校组织了一次古诗词知识测试,徐东从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频数分布表(含频率)和频数分布直方图.请根据频数分布表(含频率)和频数分布直方图,回答下列问题:(1)分别求出a、b、m、n的值;(写出计算过程)(2)老师说:“徐东的测试成绩是被抽取的同学成绩的中位数”,那么徐东的测试成绩在什么范围内?(3)得分在的为“优秀”,若徐东所在学校共有600名学生,从本次比赛中选取得分为“优秀”的学生参加区赛,请问共有多少名学生被选拔参加区赛?24.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.25.(10分)计算:(1)

;(2)26.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(1)如图①,当点D落在BC边上时,求点D的坐标;(2)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:设多边形的边数为n,则=135,解得:n=8考点:多边形的内角.2、B【解析】分析:先根据不等式kx<b的解集是x>判断出k的符号,再根据k、b满足kb﹥0得到b的符号,最后根据一次函数图象的性质即可解答.详解:∵不等式kx<b的解集是x>,∴k<0,∵kb>0,∴b<0,∴函数y=kx+b的图象过二、三、四象限.故选B.点睛:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.3、A【解析】

先根据函数图像得出其经过的象限,由一次函数图像与系数的关系即可得出结论.【详解】因为y随着x的增大而减小,可得:k<0,因为kb<0,可得:b>0,所以图像经过一、二、四象限.故选A.【点睛】本题考查的是一次函数的图像与系数的关系,即一次函数y=kx+b(k0)中,当k<0,b>0时函数的图像经过一、二、四象限.4、B【解析】

分别化简,与是同类二次根式才能合并.【详解】解:A不能与合并B能与合并C不能与合并D不能与合并故答案为:B【点睛】本题考查知识点:同类二次根式.解题关键点:将二次根式化简成最简二次更是,以及理解同类二次根式的定义.5、A【解析】

连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【详解】解:如图,连接AC与BD相交于O,

在▱ABCD中,OA=OC,OB=OD,

要使四边形AECF为平行四边形,只需证明得到OE=OF即可;

A、AF=EF无法证明得到OE=OF,故本选项正确.

B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,则OB-BE=OD-DF,即OE=OF,故本选项错误;

C、若AF⊥CF,CE⊥AE,由直角三角形的性质可得OE=AC=OF,故本选项错误;

D、若BE=DF,则OB-BE=OD-DF,即OE=OF,故本选项错误;

故选:A.【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定方法是解题的关键.6、C【解析】

根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.【详解】解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7、D【解析】

直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,解得n=1.故选:D.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.8、B【解析】

∵函数(y=kx+b)中y随x增大而减小,∴k<0,∵只有B选项k=-2<0,其它选项都大于0,∴B选项是正确.故选B.9、B【解析】

根据平行四边形对角线互相平分的性质可得OA=OC,又因点E是BC的中点,所以OE是△ABC的中位线,再由三角形的中位线定理可得AB的值.【详解】解:在平行四边形ABCD中,对角线AC、BD交于点O,∴OA=OC∴点O是AC的中点又∵点E是BC的中点∴OE是△ABC的中位线∴AB=2OE=6cm故选:B【点睛】本体考查了平行四边形的性质、三角形的中位线定理,掌握平行四边形的性质,三角形的中位线定理是解题的关键.10、A【解析】

先根据直线y=-3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【详解】∵直线y=−3x+b,k=−3<0,

∴y随x的增大而减小,

又∵−2<−1<1,.故选:.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数图象.二、填空题(每小题3分,共24分)11、4或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;②长为3、3的边都是直角边时:第三边的长为:;∴第三边的长为:或4.考点:3.勾股定理;4.分类思想的应用.12、等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.

故答案是:等腰三角形的两底都是直角或钝角.13、(,0).【解析】试题分析:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴E点坐标为(3,),设直线GF的解析式为y=ax+b,把E(3,),G(0,﹣2)代入得,解得,∴直线GF的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,∴点F的坐标为(,0).考点:反比例函数与一次函数的交点问题.14、①②③⑤【解析】

根据三角形中位线定理得到EF=AB,EF∥AB,根据直角三角形的性质得到DF=AC,根据三角形内角和定理、勾股定理计算即可判断.【详解】∵E,F分别是BC,AC的中点,∴EF=AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正确;∵∠ADC=90°,F是AC的中点,∴DF=CF=AC,∵AB=AC,EF=AB,∴EF=DF,故②正确;∵∠CAD=∠ACD=45°,点F是AC中点,∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴AC=CD,∵AB=AC,∴AB=CD,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15、.【解析】

由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.【详解】解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,∴可把a,b看成是方程x2-7x+2=0的两个根,∴a+b=7,ab=2,∴===.故答案为:.【点睛】本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab是解题的关键.16、答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】

先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D.E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则17、20cm或22cm.【解析】

根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.【详解】如图:∵ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3cm,CE=4cm,AB=3cm,则周长为20cm;②当BE=4cm时,CE=3cm,AB=4cm,则周长为22cm.【点睛】本题考查平行四边形的性质,分类讨论是关键.18、【解析】

试题分析:根据菱形性质得出AC⊥BD,AO=OC=12,BO=BD=5,根据勾股定理求出AB,根据菱形的面积得出S菱形ABCD=×AC×BD=AB×DE,代入求出即可.【详解】∵四边形ABCD是菱形,AC=24,BD=10,∴AC⊥BD,AO=OC=AC=12,BO=BD=5,在Rt△AOB中,由勾股定理得:AB=13,∵S菱形ABCD=×AC×BD=AB×DE,∴×24×10=13DE,∴DE=,故答案为.【点睛】本题考查的是菱形的性质及等面积法,掌握菱形的性质,灵活运用等面积法是解题的关键.三、解答题(共66分)19、(1)见解析;(2)当ɑ=108°时,四边形AFDE是平行四边形.【解析】

(1)根据旋转的性质、全等三角形的判定定理证明△ABD≌△ACE,证明结论;(2)根据平行四边形的判定定理证明.【详解】(1)证明:∵△ADE是由△ABC旋转得到的,∴AB=AD,AC=AE,∠BAD=∠CAE,在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE(2)当ɑ=108°时,四边形AFDE是平行四边形。理由:∵∠BAD=108°,AB=AD,∴∠ABD=∠ADB=(180°−∠BAD)=36°∴∠DAE=∠ADB,∴AE//FD,又∵∠CAD=∠BAD-∠BAC=72°,∴∠ADE=∠AED=∴∠CAD=∠ADE∴AF//ED∴四边形AFDE是平行四边形【点睛】考查的是旋转的性质、全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.20、见详解【解析】

根据线段垂直平分线性质作图求解即可.【详解】解:如图,作AB的垂直平分线,交AC于P.则PA=PB,点P为所求做的点.【点睛】本题考查尺规作图.线段垂直平分线的性质:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.作线段的垂直平分线是解决本题关键.21、这项工程预期21天完成.【解析】

首先设规定的工期是x天,则甲队完成这项工程要x天,乙队完成这项工程要(x+5)天.根据题意可得等量关系:甲干4天的工作量+乙干x天的工作量=1,根据等量关系列出方程即可.【详解】设规定的工期是x天,则甲队完成这项工程要x天,乙队完成这项工程要(x+5)天.由题意可列方程:=1,解这个方程得:x=21检验:x=21时,x(x+5)≠1.故x=21是原方程的解.答:这项工程预期21天完成.【点睛】此题考查分式方程的应用,解题关键在于列出方程22、(1)甲队单独完成此项任务需1天,乙队单独完成此项任务需20天;(2)甲队至少再单独施工2天.【解析】

(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,根据甲队单独植树7天和乙队单独植树5天的工作量相同,可得出关于x的一元一次方程,解之即可得出结论;(2)设甲队再单独施工y天,根据甲队完成的工作量+乙队完成的工作量不少于总工作量(1),即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【详解】(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,依题意,得:,解得:x=20,经检验,x=20是原方程的解,∴x+2=1.答:甲队单独完成此项任务需1天,乙队单独完成此项任务需20天.(2)设甲队再单独施工y天,依题意,得:,解得:y≥2.答:甲队至少再单独施工2天.【点睛】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,一元一次不等式的应用,解答时验根是学生容易忽略的地方.23、(1)a=3,b=0.3,m=15,n=0.04(2)(3)24【解析】

(1)首先通过统计表中任意一组已知的数据,用总人数=频数÷频率求出总人数,再用频数=总人数×频率求出a值,再用总人数减去其他组别的频数和,得到第2组的频数m值,最后用频率=频数÷总人数得出b值和n值.(2)中位数是指把一组数据从小到大排列,位于最中间的那个数.若这组数据的个数是偶数个,则是指位于最中间两个数的平均数.通过概念可以确定中位数在哪一组内.(3)本小题考查用样本估计总体,首先需要把我们调查的样本中优秀学生所占的比例计算出来,再通过这个比例之间可以去估计总体600名学生优秀的人数.【详解】(1)由总人数=频数÷频率可知,取第一组数据,得到总人数=9÷0.18=50(人)由频数=总人数×频率可知,第四组数据中,a=50×0.06=3(人)用总人数减去其他组别的频数和,得到第2组的频数,m=50-(9+21+3+2)=15(人)由频率=频数÷总人数可知,第二组数据中,b=15÷50=0.3第五组数据中,n=2÷50=0.04综上可得:a=3,b=0.3,m=15,n=0.04(2)因为总人数是50人,则数据为偶数个,则中位数应该把成绩数据从小到大排列之后,取第25个和第26个的平均数.第一组与第二组的人数已经有9+15=24人,则第25个与第26个数据的平均数应该在第三组的范围内.即徐东的测试成绩在范围内.(3)样本中优秀的学生所占比例即为第5组的频数值0.04,所以全校的优秀比例也可用该值估算:600×0.04=24(人)故答案为(1)a=3,b=0.3,m=15,n=0.04(2)(3)24【点睛】本题考察了频率分布表中的计算,以及用样本估计总体.涉及到的公式有总人数=频数÷频率,样本中各部分所占比例近似等于总体中各部分所占比例.24、(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论