版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省郯城县2024年八年级数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图在5×5的正方形网格中(每个小正方形的边长为1个单位长度),格点上有A、B、C、E五个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接()A.AE B.AB C.AD D.BE2.某商品降价后欲恢复原价,则提价的百分数为().A. B. C. D.3.下列各式正确的个数是()①;②;③;④A.0 B.1 C.2 D.34.直线y=k1x+b与直线y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x+c的解集为()A. B. C. D.5.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C. D.6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①② B.选②③ C.选①③ D.选②④7.下列二次根式中,属于最简二次根式的是A. B. C. D.8.下列说法中,错误的是()A.平行四边形的对角线互相平分 B.菱形的对角线互相垂直C.矩形的对角线相等 D.正方形的对角线不一定互相平分9.在平行四边形ABCD中,若AB=5cm,,则()A.CD=5cm,, B.BC=5cm,,C.CD=5cm,, D.BC=5cm,,10.在平面直角坐标系中,点0,-5在()A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上二、填空题(每小题3分,共24分)11.边长为2的等边三角形的面积为__________12.直线y=2x+1经过点(a,0),则a=________.13.如图,已知在长方形ABCD中,将△ABE沿着AE折叠至△AEF的位置,点F在对角线AC上,若BE=3,EC=5,则线段CD的长是__________.14.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.15.如图,在矩形中,点为射线上一动点,将沿折叠,得到若恰好落在射线上,则的长为________.16.两条平行线间的距离公式一般地;两条平行线间的距离公式如:求:两条平行线的距离.解:将两方程中的系数化成对应相等的形式,得因此,两条平行线的距离是____________.17.如图,点是的对称中心,,是边上的点,且是边上的点,且,若分别表示和的面积则.18.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BC=16,CD=6,则AC=_____.三、解答题(共66分)19.(10分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:(1)求图中的值,并求出所在直线方程;(2)组委会在距离起点2.1千米处设立一个拍摄点,小明从第一次过点到第二次经过点所用的时间为68分钟①求所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?20.(6分)解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.21.(6分)计算或解不等式组:(1)计算.(2)解不等式组22.(8分)如图,在四边形ABCD中,AB=BC=3,CD=,DA=5,∠B=90°,求∠BCD的度数23.(8分)某学校举行“中国梦,我的梦”演讲比赛,初、高中部根据初赛成绩,各选出5名选手组成代表队决赛,初、高中部代表队的选手决赛成绩如图所示:(1)根据图示填写表格:平均数(分)中位数(分)众数(分)初中代表队8585高中代表队80(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好.24.(8分)在矩形中ABCD,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对位点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求的值.25.(10分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.26.(10分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,BH和AF有何数量关系,并说明理由;(2)将正方形EFGH绕点E顺时针方向旋转,如图2,判断BH和AF的数量关系,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据勾股定理求出AD,BE,根据算术平方根的大小比较方法解答.【详解】AE=4,AB=3,由勾股定理得AD=,3<<4,BE==1.故选C.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.2、C【解析】解:设原价为元,提价百分数为,则,解得,故选.3、B【解析】
根据根式运算法则逐个进行计算即可.【详解】解:①,故错误;
②这个形式不存在,二次根式的被开分数为非负数,故错误;
③;,正确;
④,故错误.
故选B.【点睛】本题考查了二次根式的化简,注意二次根式要化最简.4、B【解析】
根据函数的图象得出两函数的交点坐标,再根据图象即可得出答案.【详解】∵根据图象可知:两函数的交点坐标为(1,-2),∴关于x的不等式k1x+b>k2x+c的解集是x>1,故选B.【点睛】本题考查了一次函数与一元一次不等式的性质,能根据函数的图象得出两函数的交点坐标是解此题的关键.5、C【解析】
由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【详解】∵四边形ABCD是菱形,AC=6,BD=4,
∴AC⊥BD,
OA=AC=3,
OB=BD=2,
AB=BC=CD=AD,
∴在Rt△AOB中,AB==,∴菱形的周长为4.故选C.6、B【解析】试题分析:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.考点:1.正方形的判定;2.平行四边形的性质.7、A【解析】
最简二次根式满足的条件是:被开方数不含能开方的因数或因式;被开方数不能是小数或分数;分母中不能出现二次根式.【详解】根据最简二次根式满足的条件可得:是最简二次根式,故选A.【点睛】本题主要考查最简二次根式的定义,解决本题的关键是要熟练掌握满足最简二次根式的条件.8、D【解析】
用平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等进行判断即可.【详解】解:A.平行四边形的对角线互相平分,本选项正确;B.菱形的对角线互相垂直,本选项正确;C.矩形的对角线相等,本选项正确;D.正方形的对角线一定互相平分,故该选项错误.故选D.【点睛】本题考查特殊平行四边形的性质,掌握平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线相等且互相平分,正方形对角线互相垂直平分且相等的性质进行判断是解题关键.9、C【解析】
根据平行四边形性质得出AB=CD=5cm,∠B=∠D=55°,即可得出选项.【详解】∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵AB=5cm,∠B=55°,∴CD=5cm,∠D=55°,故选:C.【点睛】本题考查了平行四边形的性质,掌握知识点是解题关键.10、D【解析】
依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点(1,-5),横坐标为1∴点(1,-5)在y轴负半轴上故选:D.【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为1,y轴上点的横坐标为1.二、填空题(每小题3分,共24分)11、【解析】
根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴∴故答案为:【点睛】考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.12、【解析】
代入点的坐标,求出a的值即可.【详解】将(a,0)代入直线方程得:2a+1=0解得,a=,故答案.【点睛】本题考查了直线方程问题,考查函数代入求值,是一道常规题.13、2【解析】
由折叠可得:∠AFE=∠B=90°,依据勾股定理可得:Rt△CEF中,CF1.设AB=x,则AF=x,AC=x+1,再根据勾股定理,可得Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+1)2,解方程即可得出AB的长,由矩形的性质即可得出结论.【详解】由折叠可得:AB=AF,BE=FE=3,∠AFE=∠B=90°,∴Rt△CEF中,CF1.设AB=x,则AF=x,AC=x+1.∵Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+1)2,解得:x=2,∴AB=2.∵ABCD是矩形,∴CD=AB=2.故答案为:2.【点睛】本题考查了矩形的性质以及勾股定理的综合运用,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14、【解析】
先找出中心对称图形有平行四边形、正方形和圆3个,再直接利用概率公式求解即可求得答案.【详解】解:张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,随机摸出1张,卡片上的图形是中心对称图形的概率是,故答案为:.【点睛】本题主要考查了中心对称图形和概率公式.用到的知识点为:概率所求情况数与总情况数之比.15、或15【解析】
如图1,根据折叠的性质得到AB=A=5,E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A=AB=5,求得AB=BF=5,
根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.【详解】∵四边形ABCD是矩形,∴AD=BC=3,CD=AB=5,如图1,由折叠得AB=A=5,E=BE,∴,∴,在Rt△中,,∴,解得BE=;如图2,由折叠得AB=A=5,∵CD∥AB,∴∠=∠,∵,∴,∵AE垂直平分,∴BF=AB=5,∴,∵CF∥AB,∴△CEF∽△ABE,∴,∴,∴BE=15,故答案为:或15.【点睛】此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.16、1【解析】试题分析:认真读题,可知A=3,B=4,C1=-10,C2=-5,代入距离公式为===1.17、【解析】
根据同高的两个三角形面积之比等于底边之比得出再由点O是▱ABCD的对称中心,根据平行四边形的性质可得S△AOB=S△BOC=,从而得出S1与S2之间的等量关系.【详解】解:由题意可得∵点O是▱ABCD的对称中心,∴S△AOB=S△BOC=,故答案为:【点睛】本题考查了中心对称,三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出是解题的关键.18、1【解析】
作DE⊥AB于E.设AC=x.由AD平分∠CAB,DC⊥AC,DE⊥AB,推出DC=DE=6,由BC=16,推出BD=10,在Rt△EDB中,BE=BD2-DE2=8,易知△ADC≌△ADE,推出AE=AC=x,在Rt△ACB中,根据AC2+BC2=AB2,可得x2【详解】解:作DE⊥AB于E.设AC=x.
∵AD平分∠CAB,DC⊥AC,DE⊥AB,
∴DC=DE=6,
∵BC=16,
∴BD=10,
在Rt△EDB中,BE=BD2-DE2=8,
易知△ADC≌△ADE,
∴AE=AC=x,
在Rt△ACB中,∵AC2+BC2=AB2,
∴x2+162=(x+8)2,
∴x=1,
【点睛】本题考查了角平分线性质,全等三角形的性质与判定及勾股定理,熟练掌握相关性质定理是解题的关键。三、解答题(共66分)19、(1);(2)①;②85分钟【解析】
(1)根据路程=速度×时间,再把A点的值代入即可解决问题.(2)①先求出A、B两点坐标即可解决问题.②令s=0,求出x的值即可解决问题.【详解】解:(1)∵从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟,∴千米.∴,设直线的解析式为:,把代入,得,解得,,∴直线的解析式为:;(2)①∵直线解析式为,∴当时,,解得,∵小明从第一次经过C点到第二次经过C点所用的时间为68分钟,∴小明从起点到第二次经过C点所用的时间是,分钟,∴直线经过,,设直线解析式,∴,,解得,,∴直线解析式为.②小明跑完赛程用的时间即为直线与轴交点的横坐标,∴当时,,解得,∴小明跑完赛程用时85分钟.【点睛】此题考查一次函数综合题,解题关键在于列出方程.20、(1)(x﹣y)(3a+1b)(3a﹣1b);(1)m=2,n=9,(x+3)1.【解析】
(1)用提取公因式和平方差公式进行因式分解即可解答;(1)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a1(x﹣y)﹣4b1(x﹣y)=(x﹣y)(9a1﹣4b1)=(x﹣y)(3a+1b)(3a﹣1b);(1)∵(x+1)(x+4)=x1+2x+8,甲看错了n,∴m=2.∵(x+1)(x+9)=x1+10x+9,乙看错了m,∴n=9,∴x1+mx+n=x1+2x+9=(x+3)1.【点睛】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.21、(1);(2)不等式组无解.【解析】
(1)根据二次根式的运算顺序及运算法则进行计算即可求解;(2)分别求得两个不等式的解集,根据不等式解集确定方法即可求得不等式组的解集.【详解】(1)原式(2)解不等式①得,;解不等式②得,,所以不等式组无解.【点睛】本题考查了二次根式的混合运算及一元一次不等式组的解法,熟练运用相关知识是解决问题的关键.22、135°.【解析】
由于∠B=90°,AB=BC=3,利用勾股定理可求AC,并可求∠BCA=45°,而CD=,AD=5,易得AC2+AD2=CD2,可证△ACD是直角三角形,于是有∠ACD=90°,从而易求∠BCD.【详解】解:∵∠B=90°,AB=BC=3,∴AC===3,,∠BAC=∠BCA=45°,又∵CD=,DA=5,∴AC2+CD2=18+7=25,AD2=25,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,
∴∠ACD=90°,
∴∠BCD=∠BCA+∠DCA=45°+90°=135°.【点睛】本题考查等腰三角形的性质、勾股定理、勾股定理的逆定理.解题的关键是证明△ACD是直角三角形.23、(1)详见解析;(2)初中部成绩好些【解析】
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;
(2)根据平均数和中位数的意义即可得出答案;【详解】解:(1)因为共有5名选手,把这些数从小到大排列,则初中代表队的中位数是85;高中代表队的平均数是:(70+100+100+75+80)=85(分),因为100出现的次数最多,则众数是100(分);补全表格如下:平均数(分)中位数(分)众数(分)初中代表队858585高中代表队8580100(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.【点睛】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一-个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24、(1)见解析;(2)①见解析;②【解析】
(1)先判断出,再判断出,即可得出结论;(2)①利用折叠的性质,得出,,进而判断出即可得出结论;②判断出,得出比例式建立方程求解即可得出,,再判断出,进而求出,即可得出结论;【详解】解:(1)在矩形中,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物业租赁合同标的及租赁期限3篇
- 2024年度第三方停车场租赁及权益保障合同
- 2024年度电梯设备安装与井道施工联合运营合同3篇
- 二零二四年度教育培训合同(编程)
- 二零二四年度地下车库安全出口改造合同2篇
- 二零二四年食品加工厂建设合同
- 2024年度企业重组合同2篇
- 二零二四年度车位代理销售公司与金融机构之间车位代理销售合同
- 2024年度网络安全保障与风险管理服务合同
- 2024年度地下室房屋买卖合同指南3篇
- 2023年版中国偏头痛诊断与治疗指南解读课件
- 《电子政务》复习题及答案(分题型)
- 侵权告知函(盗用图片)
- 2024年汽车维修工技能理论考试题库附完整答案(历年真题)
- 小学四史教育主题班会教案
- 2023-2024学年辽宁省阜新市七年级(上)月考数学试卷(12月份)
- 黑龙江省齐齐哈尔市2023-2024学年九年级上学期期末语文试题
- 神经外科进修总结汇报
- 我的教育故事20篇
- 植物病虫害防治绿色防控
- 勿忘国耻吾辈自强班会
评论
0/150
提交评论