![山东省济南天桥区四校联考2024年数学八年级下册期末调研试题含解析_第1页](http://file4.renrendoc.com/view12/M08/30/06/wKhkGWYWtSmAFGeCAAHWiTNWgNE247.jpg)
![山东省济南天桥区四校联考2024年数学八年级下册期末调研试题含解析_第2页](http://file4.renrendoc.com/view12/M08/30/06/wKhkGWYWtSmAFGeCAAHWiTNWgNE2472.jpg)
![山东省济南天桥区四校联考2024年数学八年级下册期末调研试题含解析_第3页](http://file4.renrendoc.com/view12/M08/30/06/wKhkGWYWtSmAFGeCAAHWiTNWgNE2473.jpg)
![山东省济南天桥区四校联考2024年数学八年级下册期末调研试题含解析_第4页](http://file4.renrendoc.com/view12/M08/30/06/wKhkGWYWtSmAFGeCAAHWiTNWgNE2474.jpg)
![山东省济南天桥区四校联考2024年数学八年级下册期末调研试题含解析_第5页](http://file4.renrendoc.com/view12/M08/30/06/wKhkGWYWtSmAFGeCAAHWiTNWgNE2475.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南天桥区四校联考2024年数学八年级下册期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是()A.1 B.2 C.3 D.42.下表是两名运动员10次比赛的成绩,,分别表示甲、乙两名运动员测试成绩的方差,则有()8分9分10分甲(频数)424乙(频数)343A. B. C. D.无法确定3.下列等式正确的是()A.+=+ B.﹣=C.++= D.+﹣=4.要使分式意义,则字母x的取值范围是()A.x≠0 B.x<0 C.x>2 D.x≠25.已知是方程的一个根,则()A. B. C. D.6.周长为4cm的正方形对角线的长是()A.42cm B.22cm7.完成以下任务,适合用抽样调查的是()A.调查你班同学的年龄情况B.为订购校服,了解学生衣服的尺寸C.对北斗导航卫星上的零部件进行检查D.考察一批炮弹的杀伤半径.8.如图,已知四边形是平行四边形,下列结论不正确的是()A.当时,它是矩形 B.当时,它是菱形C.当时,它是菱形 D.当时,它是正方形9.直线:为常数的图象如图,化简:A.3 B. C. D.510.下列图形中,是轴对称图形,不是中心对称图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。12.已知,则比较大小2_____3(填“<“或“>”)13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.14.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.15.方程的两个根是和,则的值为____.16.如图,以Rt△ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则△ABC的面积为_____.17.如图,正方形ABCD的边长为10,点A的坐标为(-8,0),点B在y轴上.若反比例函数y=kx的图像经过点C,则k的值为18.如图所示,在矩形ABCD中,DE⊥AC于E,∠ADE:∠EDC=3:2,则∠BDE的度数是_____.三、解答题(共66分)19.(10分)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求在平移过程中线段AB扫过的面积.20.(6分)为了解市民对“雾霾天气的主要原因”的认识,某调查公司随机抽查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.组别观点频数(人数)大气气压低,空气不流动100底面灰尘大,空气湿度低汽车尾气排放工厂造成的污染140其他80调查结果扇形统计图请根据图表中提供的信息解答下列问题:(1)填空:__________,__________.扇形统计图中组所占的百分比为__________%.(2)若该市人口约有100万人,请你估计其中持组“观点”的市民人数约是__________万人.(3)若在这次接受调查的市民中,随机抽查一人,则此人持组“观点”的概率是__________.21.(6分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.22.(8分)如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于.(1)当在点的右侧时,求证:四边形是平形四边形.(2)连结,当四边形恰为矩形时,求的长.(3)如图2,设,,记点与之间的距离为,直接写出的所有值.23.(8分)如图,在矩形ABCD中,点E、F在边AD上,AF=DE,连接BF、CE.(1)求证:∠CBF=∠BCE;(2)若点G、M、N在线段BF、BC、CE上,且FG=MN=CN.求证:MG=NF;(3)在(2)的条件下,当∠MNC=2∠BMG时,四边形FGMN是什么图形,证明你的结论.24.(8分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).(1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;(2)求△OAB的边AB上的中线的长.25.(10分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x;y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?26.(10分)某县为了了解2018年初中毕业生毕业后的去向,对部分九年级学生进行了抽样调查,就九年级学生的四种去向(A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他)进行数据统计,并绘制了两幅不完整的统计图(如图①②)请问:(1)本次共调查了_名初中毕业生;(2)请计算出本次抽样调查中,读职业高中的人数和所占百分比,并将两幅统计图中不完整的部分补充完整;(3)若该县2018年九年级毕业生共有人,请估计该县今年九年级毕业生读职业高中的学生人数.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.【详解】∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形.∵AD=DC,∴四边形AECD是菱形,∴AE=EC=CD=AD=2,∴∠2=∠1.∵∠1=∠2,∴∠1=∠2=∠1.∵∠ABC=90°,∴∠1+∠2+∠1=90°,∴∠1=∠2=∠1=10°,∴BE=AE,AC=2AB.本答案正确;∴BE=1,在Rt△ABE中,由勾股定理,得AB=.本答案正确;∵O是AC的中点,∠ABC=90°,∴BO=AO=CO=AC.∵∠1=∠2=∠1=10°,∴∠BAO=60°,∴△ABO为等边三角形.∵∠1=∠2,∴AE⊥BO.本答案正确;∵S△ADC=S△AEC=,∵CE=2,BE=1,∴CE=2BE,∴S△ACE=,∴S△ACE=2S△ABE,∴S△ADC=2S△ABE.本答案正确.∴正确的个数有4个.故选D.【点睛】本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键2、A【解析】【分析】先求甲乙平均数,再运用方差公式求方差.【详解】因为,,,所以,=,=,所以,故选A【点睛】本题考核知识点:方差.解题关键点:熟记方差公式.3、D【解析】
根据三角形法则即可判断.【详解】∵,∴,故选D.【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.4、D【解析】
本题主要考查分式有意义的条件:分母不能为1.【详解】要使分式有意义,则x﹣2≠1,解得x≠2.故选:D.【点睛】本题考查的是分式有意义的条件:当分母不为1时,分式有意义.5、D【解析】
把n代入方程得到,再根据所求的代数式的特点即可求解.【详解】把n代入方程得到,故∴3()-7=3-7=-4,故选D.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程的解的定义.6、D【解析】
先根据正方形的性质得到正方形的边长为1cm,然后根据勾股定理得到正方形对角线的长.【详解】解:∵正方形的周长为4cm,∴正方形的边长为1cm,∴正方形的对角线的长为12+12故选:D.【点睛】本题考查了正方形的性质和勾股定理,根据正方形的四条边相等得出直角三角形的两直角边长是解决此题的关键.7、D【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、人数不多,容易调查,宜采用全面调查;B、为订购校服,了解学生衣服的尺寸是要求精确度高的调查,适合全面调查;C、对北斗导航卫星上的零部件进行检查,因为调查的对象比较重要,应采用全面调查;D、考察一批炮弹的杀伤半径适合抽样调查;故选D.【点睛】本题主要考查了全面调查和抽样调查,解题时根据调查的对象的范围的大小作出判断,当范围较小时常常采用全面调查.8、D【解析】
根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案.【详解】A.正确,对角线相等的平行四边形是矩形;B.正确,对角线垂直的平行四边形是菱形;C.正确,有一组邻边相等的平行四边形叫做菱形;D.不正确,有一个角是直角的平行四边形叫做矩形。故选D【点睛】此题考查平行四边形的性质,矩形的判定,正方形的判定,解题关键在于掌握判定法则9、C【解析】
先从一次函数的图象判断出的正负,然后再化简原代数式.【详解】由直线为常数的图象可得:,所以,故选:C.【点睛】本题主要考查一次函数的图象,关键是根据二次根式的性质及其化简,绝对值的化简解答.10、B【解析】
根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】A选项是轴对称图形,也是中心对称图形,故本选项不符合题意;B选项是轴对称图形,不是中心对称图形,故本选项符合题意;C选项是轴对称图形,也是中心对称图形,故本选项不符合题意;D选项是轴对称图形,也是中心对称图形,故本选项不符合题意.故选B.【点睛】此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、36【解析】
连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB⋅BC+AC⋅CD=×3×4+×5×12=36,故四边形ABCD的面积是36【点睛】此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线12、<【解析】
要使两个分式的和为零,则必须两个分式都为0,进而计算a,b的值,代入比较大小即可.【详解】解:∵+=0,∴a﹣3=0,2﹣b=0,解得a=3,b=2,∴2,,∴.故答案为:<【点睛】本题主要考查根式为零时参数的计算,这是考试的重点知识,应当熟练掌握.13、【解析】
由从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,有三种取法,其中抽到九年级(1)班的有一种,所以恰好抽到九年级(1)班的概率是:.故答案为14、630【解析】分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x千米/时,y千米/时,甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,乙车行驶900-720=180千米所需时间为180÷80=2.25小时,甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.所以甲车从B地向A地行驶了120×2.25=270千米,当乙车到达A地时,甲车离A地的距离为900-270=630千米.点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.15、【解析】
根据韦达定理求解即可.【详解】∵方程的两个根是和∴由韦达定理得故答案为:.【点睛】本题考查了一元二次方程根的问题,掌握韦达定理是解题的关键.16、32【解析】
在上截取,连接,根据、、、四点共圆,推出,证,推出,,得出等腰直角三角形,根据勾股定理求出,即可求出.由三角形面积公式即可求出Rt△ABC的面积.【详解】解:在上截取,连接,四边形是正方形,,,,、、、四点共圆,,在和中,,,,,,即是等腰直角三角形,由勾股定理得:,即.∴=4故答案为:32【点睛】本题主要考查对勾股定理,正方形的性质,直角三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,利用旋转模型构造三角形全等和等腰直角三角形是解此题的关键.17、1【解析】
过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明ΔABO和ΔBCE全等,根据全等三角形对应边相等可得OA=BE=8,CE=OB=6,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.【详解】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(-8,0),∴OA=8,∵AB=10,∴OB=10在ΔABO和ΔBCE中,∠OAB=∠CBE∠AOB=∠BEC∴ΔABO≅ΔBCE(AAS),∴OA=BE=8,CE=OB=6,∴OE=BE-OB=8-6=2,∴点C的坐标为(6,2),∵反比例函数y=kx(k≠0)∴k=xy=2×6=12,故答案为1.【点睛】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点C的坐标是解题的关键.18、18°【解析】
根据矩形的性质及角度的关系即可求解.【详解】∵,∠ADC=90°,∴∠EDC=36°,∵∴∠DCE=54°,∵CO=DO,∴∠ODC=∠DCE=54°,∴=∠ODC-∠EDC=18°【点睛】此题主要考查矩形的性质,解题的关键是熟知继续对角线互相平分且相等.三、解答题(共66分)19、(1)图见解析,;(2)25【解析】
(1)由题意直接根据图形平移的性质画出△A′B′C′,并写出各点坐标即可;(2)由题意可知AB扫过的部分是平行四边形,根据平行四边形的面积公式即可得出结论.【详解】解:(1)平移后的△A′B′C′如图所示,观察图象可知点A′、B′、C′的坐标分别为:.(2)由图象以及平移的性质可知线段AB扫过部分形状为平行四边形,且底为5,高为5,故线段AB扫过的面积为:.【点睛】本题考查的是作图-平移变换,熟练掌握图形平移不变性的性质是解答此题的关键.20、5013016%280.26【解析】
(1)求得总人数,然后根据百分比的定义即可求得;(2)利用总人数100万,乘以所对应的比例即可求解;(3)利用频率的计算公式即可求解.【详解】解:(1)总人数是:100÷20%=500(人),则m=500×10%=50(人),C组的频数n=500﹣100﹣50﹣140﹣80=130(人),E组所占的百分比是:×100%=16%;故答案为:50,130,16%;(2)100×=28(万人);所以持D组“观点”的市民人数为28万人;(3)随机抽查一人,则此人持C组“观点”的概率是.答:随机抽查一人,则此人持C组“观点”的概率是.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.21、(1)见解析;(2)见解析.【解析】
(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.22、(1)见解析;(2)FG=;(3)d=14或.【解析】
(1)由菱形的性质可得AP∥EF,∠APF=∠EPF=∠APE,PB∥CD,∠CDB=∠PDB=∠CDP,由平行线的性质可得∠FPE=∠BDP,可得PF∥BD,即可得结论;(2)由矩形的性质和菱形的性质可得FG=PB=2EF=2AP,即可求FG的长;(3)分两种情况讨论,由勾股定理可求d的值;点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H;若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H.【详解】(1)∵四边形APEF是菱形∴AP∥EF,∠APF=∠EPF=∠APE,∵四边形PBCD是菱形∴PB∥CD,∠CDB=∠PDB=∠CDP∴∠APE=∠PDC∴∠FPE=∠BDP∴PF∥BD,且AP∥EF∴四边形四边形FGBP是平形四边形;(2)若四边形DFPG恰为矩形∴PD=FG,PE=DE,EF=EG,∴PD=2EF∵四边形APEF是菱形,四边形PBCD是菱形∴AP=EF,PB=PD∴PB=2EF=2AP,且AB=10∴FG=PB=.(3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,∵FE=2EG,∴PB=FG=3EG,EF=AP=2EG∵AB=10∴AP+PB=5EG=10∴EG=2,∴AP=4,PB=6=BC,∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=3,CH=BH=3∴AH=13∴AC==14若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H∵FE=2EG,∴PB=FG=EG,EF=AP=2EG∵AB=10,∴3EG=10∴EG=∴BP=BC=∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=,CH=BH=∴AH=∴AC=综上所述:d=14或.【点睛】本题考查菱形的性质、平行线的性质、平行四边形的判定及勾股定理,解题的关键是掌握菱形的性质、平行线的性质、平行四边形的判定及勾股定理的计算.23、(1)见解析;(2)见解析;(3)四边形FGMN是矩形,见解析【解析】
(1)由“SAS”可证△ABF≌△DCE,可得∠ABF=∠DCE,可得结论;(2)通过证明四边形FGMN是平行四边形,可得MG=NF;(3)过点N作NH⊥MC于点H,由等腰三角形的性质可证∠BMG=∠MNH,可证∠GMN=90°,即可得四边形FGMN是矩形.【详解】证明:(1)∵四边形ABCD是矩形∴AB=CD,∠A=∠D=90°,且AF=DE∴△ABF≌△DCE(SAS)∴∠ABF=∠DCE,且∠ABC=∠DCB=90°∴∠FBC=∠ECB(2)∵FG=MN=CN∴∠NMC=∠NCM∴∠NMC=∠FBC∴MN∥BF,且FG=MN∴四边形FGMN是平行四边形∴MG=NF(3)四边形FGMN是矩形理由如下:如图,过点N作NH⊥MC于点H,∵MN=NC,NH⊥MC∴∠MNH=∠CNH=∠MNC,NH⊥MC∴∠MNH+∠NMH=90°∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC∴∠BMG=∠MNH,∴∠BMG+∠NMH=90°∴∠GMN=90°∴四边形FGMN是矩形【点睛】本题考查了矩形的性质和判定,全等三角形的判定和性质,平行四边形的判定,证明∠BMG=∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子厨房秤项目建议书
- 2025年微球载体材料合作协议书
- 医院销售合同
- 电商交易平台的商品展示与服务免责协议书
- Oxadixyl-Standard-生命科学试剂-MCE
- Dimethenamide-P-Standard-生命科学试剂-MCE
- 4-Aminonicotinic-acid-生命科学试剂-MCE
- 2-3-Isopropylideneguanosine-生命科学试剂-MCE
- 幼儿绘本小蓝和小黄读后感
- 跨国能源采购及合作开发协议
- 开封市第一届职业技能大赛健康照护项目技术文件(国赛)
- 饮酒与糖尿病
- 大学体育与健康 教案 保健(八段锦)4
- 非遗资源数据库建设
- 公路电子收费系统安装合同范本
- 出生医学证明警示教育培训
- 医院培训课件:《伤口评估与测量》
- 金矿探矿权合作协议书范文范本
- 期末试卷(试题)-2024-2025学年四年级上册数学沪教版
- 小学五年级美术《青花瓷》
- 浙江水利专业高级工程师任职资格考试题及答案
评论
0/150
提交评论