浙江杭州余杭区2024年数学八年级下册期末质量检测模拟试题含解析_第1页
浙江杭州余杭区2024年数学八年级下册期末质量检测模拟试题含解析_第2页
浙江杭州余杭区2024年数学八年级下册期末质量检测模拟试题含解析_第3页
浙江杭州余杭区2024年数学八年级下册期末质量检测模拟试题含解析_第4页
浙江杭州余杭区2024年数学八年级下册期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江杭州余杭区2024年数学八年级下册期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为()A.6cm B.3cm C.9cm D.12cm2.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A.48 B.63 C.80 D.993.下列各组数中,不能构成直角三角形的是()A. B. C. D.4.如图,的对角线与相交于点,,,,则的长为()A. B. C. D.5.在数学活动课上,同学们判断一个四边形门框是否为矩形.下面是某学习小组4位同学拟定的方案,其中正确的是()A.测量对角线是否平分 B.测量两组对边是否分别相等C.测量其中三个角是否是直角 D.测量对角线是否相等6.如图是某件商晶四天内的进价与售价的折线统计图.那么售出每件这种商品利润最大的是()A.第一天 B.第二天 C.第三天 D.第四天7.实数的值在()A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间8.当时,一次函数的图象大致是()A. B.C. D.9.已知关于的一元二次方程没有实数根,则实数的取值范围是()A. B. C. D.10.在平面直角坐标系中,平行四边形的顶点的坐标分别是,,点把线段三等分,延长分别交于点,连接,则下列结论:;③四边形的面积为;④,其中正确的有().A. B. C. D.11.已知三条线段长a、b、c满足a2=c2﹣b2,则这三条线段首尾顺次相接组成的三角形的形状是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形12.下列各式是最简二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.因式分解:___.14.如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.15.如图,直线经过点,则关于的不等式的解集是______.16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.17.若一元二次方程ax2﹣bx﹣2019=0有一个根为x=﹣1,则a+b=_____.18.计算的结果是__________.三、解答题(共78分)19.(8分)(1)(发现)如图1,在中,分别交于,交于.已知,,,求的值.思考发现,过点作,交延长线于点,构造,经过推理和计算能够使问题得到解决(如图2).请回答:的值为______.(2)(应用)如图3,在四边形中,,与不平行且,对角线,垂足为.若,,,求的长.(3)(拓展)如图4,已知平行四边形和矩形,与交于点,,且,,判断与的数量关系并证明.20.(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.21.(8分)(1)计算(2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.解方程解:方程两边乘,得第一步解得第二步检验:当时,.所以,原分式方程的解是第三步小刚的解法从第步开始出现错误,原分式方程正确的解应是.22.(10分)七(1)班同学为了解2017年某小区家庭月均用水情况,随机调查了该小区的部分家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量频数(户数)百分比6161042(1)请将下列频数分布表和频数分布直方图补充完整;(2)求该小区月均用水量不超过的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计该小区月均用水量超过的家庭数.23.(10分)求证:矩形的对角线相等要求:画出图形,写出已知,求证和证明过程24.(10分)一个三角形三边的长分别为a,b,c,设p=(a+b+c),根据海伦公式S=可以求出这个三角形的面积.若a=4,b=5,c=6,求:(1)三角形的面积S;(2)长为c的边上的高h.25.(12分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲858075乙809073丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.26.在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图1,若EB=BC,求∠EBD的度数;(2)如图2,EC与BD交于点F,连接AE,若,试探究线段FC与BE之间的等量关系,并说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】

设平行四边形较短的边长为x,根据平行四边形的性质和已知条件列出方程求解即可【详解】解:设平行四边形较短的边长为x,∵相邻两边长的比为3:1,∴相邻两边长分别为3x、x,∴2x+6x=24,即x=3cm,故选B.【点睛】本题主要考查平行四边形的性质,根据性质,设出未知数,列出方程是解题的关键.2、C【解析】

解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.【点睛】本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3、C【解析】

根据勾股定理的逆定理逐项计算即可.【详解】A.∵32+42=52,∴能构成直角三角形;B.∵12+22=,∴能构成直角三角形;C.∵,∴不能构成直角三角形;D.∵12+=22,∴能构成直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.4、A【解析】

由平行四边形ABCD得OA=OC,OB=OD,在Rt△ABO中,由勾股定理得AB的长,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵,,,∴OA=3,OB=4,∵,在Rt△ABO中,由勾股定理得AB==,∴CD=AB=.故选A.【点睛】本题考查平行四边形的性质,勾股定理.正确的理解平行四边形的性质勾股定理是解决问题的关键.5、C【解析】分析:根据矩形的判定方法逐项分析即可.详解:A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;C、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;D、根据对角线相等不能得出四边形是矩形,故本选项错误;故选C.点睛:本题考查了矩形的判定方法的实际应用,熟练掌握矩形的判定方法是解答本题的关键.矩形的判定方法有:①有一个角的直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形.6、B【解析】

根据利润=售价-进价和图象中给出的信息即可得到结论.【详解】解:由图象中的信息可知,利润=售价-进价,利润最大的天数是第二天.故选:B.【点睛】本题考查折线统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价-进价是解题的关键.7、B【解析】

直接利用二次根式的估算,的值在1和,即可得出结果.【详解】解:∵1<<,∴实数的值在1与2之间.故选:B.【点睛】此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.8、A【解析】

根据k=1>0可得图象的斜率,根据b<0可得直线与y轴的交点在x轴的下方.【详解】解:∵k=1>0,∴y随x的增大而增大,又∵b<0,∴函数图象与y轴交于负半轴.故选A.【点睛】本题主要考查一次函数的图象性质,当=kx+b(k,b为常数,k≠0)时:当k>0,b>0,这时此函数的图象经过一,二,三象限;当k>0,b<0,这时此函数的图象经过一,三,四象限;当k<0,b>0,这时此函数的图象经过一,二,四象限;当k<0,b<0,这时此函数的图象经过二,三,四象限.9、A【解析】

根据判别式的意义得到△=(-2)2-4m<0,然后解关于m的不等式即可.【详解】根据题意得△=(-2)2-4m<0,解得m>1.故选A.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10、C【解析】

①根据题意证明,得出对应边成比例,再根据把线段三等分,证得,即可证得结论;②延长BC交y轴于H,证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;③利用面积差求得,根据相似三角形面积比等于相似比的平方进行计算并作出判断;④根据勾股定理,计算出OB的长,根据三等分线段OB可得结论.【详解】作AN⊥OB于点N,BM⊥x轴于点M,如图所示:在平行四边形OABC中,点的坐标分别是,,∴又∵把线段三等分,∴又∵,∴∴∴即,①结论正确;∵,∴∴平行四边形OABC不是菱形,∴∵∴∴∴故△OFD和△BEG不相似,故②错误;由①得,点G是AB的中点,∴FG是△OAB的中位线,∴,又∵把线段三等分,∴∵∴∵∴四边形DEGH是梯形∴,故③正确;,故④错误;综上:①③正确,故答案为C.【点睛】此题主要考查勾股定理、平行四边形的性质、相似三角形的判定与性质、线段的中点,熟练运用,即可解题.11、C【解析】

根据勾股定理的逆定理判断即可.【详解】∵三条线段长a、b、c满足a2=c2﹣b2,∴a2+b2=c2,即三角形是直角三角形,故选C.【点睛】本题考查了勾股定理的逆定理、等腰三角形的判定、等边三角形的判定、等腰直角三角形等知识点,能熟记勾股定理的逆定理的内容是解此题的关键.12、C【解析】

根据最简二次根式的定义对各选项分析判断利用排除法求解.【详解】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.二、填空题(每题4分,共24分)13、2a(a-2)【解析】

14、1【解析】

由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,然后把△BDE的边长通过等量转化即可得出结论.【详解】解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.故答案为:1.【点睛】本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.15、【解析】

写出函数图象在x轴下方所对应的自变量的范围即可.【详解】解:观察图像可知:当x>2时,y<1.

所以关于x的不等式kx+3<1的解集是x>2.

故答案为:x>2.【点睛】本题考查了一次函数与一元一次不等式的关系.y=kx+b与kx+b>1、kx+b<1的关系是:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.整体是就是体现数形结合的思想.16、【解析】

解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.17、1【解析】

直接把x=−1代入一元二次方程ax2−bx−1=0中即可得到a+b的值.【详解】解:把x=﹣1代入一元二次方程ax2﹣bx﹣1=0得a+b﹣1=0,所以a+b=1.故答案为1【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、【解析】分析:先根据二次根式的乘法法则进行计算,然后化简后合并即可.详解:==故答案为:.点睛:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.三、解答题(共78分)19、(1);(2);(3).【解析】

(1)由DE//BC,EF//DC,可证得四边形DCFE是平行四边形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的长即为BC+DE的值;(2)同(1)做CE//DB,交AB延长线于点E,易证四边形DBEC是平行四边形,根据已知可证△DAB△CBA(SAS),得AC=DB,等量代换,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;(3)连接AE、CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.【详解】解:(1)∵DE//BC,EF//DC,∴四边形DCFE是平行四边形,∴DE=CF,DC=EF,∴BC+ED=BC+CF=BF,∵DC⊥BE,DC//EF,∴∠BEF=90°,在Rt△BEF中,∵BE=5,EF=DC=3,∴BF==.故BC+DE=.(2)做CE//DB,交AB延长线于点E,由(1)同理,可证得四边形DBEC是平行四边形,BE=DC=3,在△DAB和△CBA中,∴△DAB△CBA(SAS),∴DB=AC,∵四边形DBEC是平行四边形,DB=CE,∴AC=CE,∵AC⊥DB,∴AC⊥CE,∴△ACE是等腰直角三角形,∵AE=AB+BE=AB+DC=5+3=8,∴AC=,求得AC=.故AC的长为.(3)AC=DF;证明:连接AE、CE,如图,∵四边形ABCD是平行四边形,∴AB//DC,∵四边形ABEF是矩形,∴AB//FE,BF=AE,∴DC//FE,∴四边形DCEF为平行四边形,∴CE=DF,∵四边形ABEF是矩形,∴BF=AE,∵BF=DF,∴DF=CE,∴AF=BE,∵四边形ABCD是平行四边形,∴AD=BC,在△FAD和△EBC中,∴△FAD△EBC(SSS),∴∠AFD=∠BEC,∴∠FEB=∠EFA=90°,∵∠EBF=60°,∠BFD=30°,∴∠DFA=90°-30°-(90°-60°)=30°,∴∠CEB=30°,∴OE=OB,∵∠EBF=60°,∴∠BEA=∠EBF=60°,∴∠AEC=60°+30°=90°,即△AEC是等腰直角三角形,∴AC=CE,∵DF=CE,∴AC=DF.故AC与DF之间的数量关系是AC=DF.【点睛】本题考查几何的综合,难度偏高,涉及的知识点有三角形、四边形、平行线等,熟练掌握以上知识点的综合运用是顺利解题的关键.20、(1)证明见解析;(2)【解析】

(1)根据平行四边形的性质得到OA=OC=AC,OB=OD=BD,推出AC=BD,于是得到结论;(2)根据已知条件得到△AOB是等边三角形,求得OA=OB=AB=5,解直角三角形即可得到结论.【详解】(1)∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形;(2)∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∵四边形ABCD是矩形,∴AC=2OA=10,∠ABC=90°,∴.【点睛】本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.21、(1);(2)一,【解析】

(1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.【详解】解:(1)====(2)小刚的解法从第一步开始出现错误解方程解:方程两边乘,得解得检验:当时,.所以,原分式方程的解是故答案为:一,【点睛】本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.22、(1)12,0.08;图见解析;(2)68%;(3)120户.【解析】

(1)根据月用电量是0<x≤5的户数是6,对应的频率是0.12,求出调查的总户数,然后利用总户数乘以频率就是频数,频数除以总数就是频率,即可得出答案;再根据求出的频数,即可补全统计图;(2)把该小区用水量不超过15t的家庭的频率加起来,就可得到用水量不超过15t的家庭占被调查家庭总数的百分比;(3)根据表格求出月均用水量在20<x≤25的频率,进而求出月均用水量超过20t的频率,乘以1000即可得到结果.【详解】(1)调查的家庭总数是:6÷0.12=50(户),则月用水量5<x⩽10的频数是:50×0.24=12(户),月用水量20<x⩽25的频率==0.08;故答案为12,0.08;补全的图形如下图:(2)该小区用水量不超过15t的家庭的频率之和是0.12+0.24+0.32=0.68,即月均用水量不超过15t的家庭占被调查的家庭总数的68%.(3)月均用水量在20<x⩽25的频率为1−(0.12+0.24+0.32+0.20+0.04)=0.08,故月均用水量超过20t的频率为0.08+0.04=0.12,则该小区月均用水量超过20t的家庭大约有1000×0.12=120(户).【点睛】此题考查频数(率)分布表,频数(率)分布直方图,用样本估计总体,解题关键在于看懂图中数据.23、证明见解析.【解析】分析:由“四边形ABCD是矩形”得知,AB=CD,AD=BC,矩形的四个角都是直角,再根据全等三角形的判定原理SAS判定全等三角形,由此,得出全等三角形的对应边相等的结论.详解:已知:四边形ABCD是矩形,AC与BD是对角线,求证:,证明:四边形ABCD是矩形,,,又,≌,,所以矩形的对角线相等点睛:本题考查的是矩形的性质和全等三角形的判定.(1)在矩形中,对边平行相等,四个角都是直角;(2)全等三角形的判定原理AAS;三个判定公理(ASA、SAS、SSS);(3)全等三角形的对应边、对应角都相等.24、(1);(2)【解析】

(1)先根据a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论