版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年广东省阳江市八年级下册数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1..一支蜡烛长20m,点燃后每小时燃烧5厘米,燃烧时剩下的高度(厘米)与燃烧时间(时)的函数关系的图像是A. B. C. D.2.如图,等腰梯形ABCD的对角线AC、BD相交于O,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对3.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是().A.50元,30元 B.50元,40元C.50元,50元 D.55元,50元4.下列数据特征量:平均数、中位数、众数、方差之中,反映集中趋势的量有()个.A. B. C. D.5.如图,在中,,,于点,则与的面积之比为()A. B. C. D.6.若与最简二次根式是同类二次根式,则的值为()A.7 B.9 C.2 D.17.如图,在Rt△ABC中,∠ACB=90˚,D,E,F分别是AB,AC,AD的中点,若AB=8,则EF的长是()A.1 B.2 C.3 D.8.如图,平行四边形ABCD中,E是AB上一点,DE、CE分别是∠ADC、∠BCD的平分线,若AD=5,DE=6,则平行四边形的面积为()A.96 B.48 C.60 D.309.下列二次根式中,属于最简二次根式的是()A. B. C. D.10.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.五边形 B.六边形 C.七边形 D.八边形11.如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()A.10 B.16 C.18 D.2012.若△ABC中,AB=13,BC=5,AC=12,则下列判断正确的是()A.∠A=90° B.∠B=90°C.∠C=90° D.△ABC是锐角三角形二、填空题(每题4分,共24分)13.如果点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,那么代数式m-3n+6的值为______.14.在平面直角坐标系中,已知点P(x,0),A(a,0),设线段PA的长为y,写出y关于x的函数的解析式为___,若其函数的图象与直线y=2相交,交点的横坐标m满足﹣5≤m≤3,则a的取值范围是___.15.若二次根式有意义,则x的取值范围是▲.16.计算:=______.17.气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.18.计算:﹣=__.三、解答题(共78分)19.(8分)已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.20.(8分)如图,在平面直角坐标系中,直线与直线相交于点A.(I)求直线与x轴的交点坐标,并在坐标系中标出点A及画出直线的图象;(II)若点P是直线在第一象限内的一点,过点P作PQ//y轴交直线于点Q,△POQ的面积等于60,试求点P的横坐标.21.(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如右表格(部分信息未给出):根据以上信息解答下列问题:选项频数频率A10B0.2C50.1D0.4E50.1(1)这次被调查的学生有多少人?(2)求表中,的值;(3)若该中学有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?22.(10分)画出函数y=2x-1的图象.23.(10分)阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”中,若,则;(2)如图,折叠平行四边形纸片,使顶点,分别落在边,上的点,处,折痕分别为,.求证:四边形是“和谐四边形”.24.(10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?25.(12分)如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE于F,连结DE.(1)当E在线段BC上时①若DE=5,求BE的长;②若CE=EF,求证:AD=AE;(2)连结BF,在点E的运动过程中:①当△ABF是以AB为底的等腰三角形时,求BE的长;②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.26.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.
参考答案一、选择题(每题4分,共48分)1、D【解析】
燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t(0≤t≤4),图象是以(0,20),(4,0)为端点的线段.【详解】解:燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t(0≤t≤4),
图象是以(0,20),(4,0)为端点的线段.
故选:D.【点睛】此题首先根据问题从图中找出所需要的信息,然后根据燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系h=20-5t(0≤t≤4),做出解答.2、C【解析】
由等腰梯形的性质可知,AB=CD,AC=BD,OA=OD,OB=OC,利用这些条件,就可以找图中的全等三角形了,有三对.【详解】∵四边形ABCD是等腰梯形,∴AB=CD,AC=BD,OA=OD,OB=OC,AD∥CB,∴△AOB≌△DOC,△ABD≌△ACD,△ABC≌△DCB.故选C.【点睛】本题考查等腰梯形的性质,全等三角形的判定.解本题时应先观察图,尽可能多的先找出图中的全等三角形,然后根据已知条件进行证明.3、C【解析】
1出现了3次,出现的次数最多,则众数是1;把这组数据从小到大排列为:20,25,30,1,1,1,55,最中间的数是1,则中位数是1.故选C.4、B【解析】
根据平均数、中位数、众数、方差的性质判断即可.【详解】数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选B.【点睛】本题考查的是平均数、中位数、众数、方差,掌握它们的性质是解题的关键.5、A【解析】
易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的面积比等于相似比的平方即可得到正确的结论.【详解】解:∵∴∠BDC=90°,∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,则BC=2BD;由①得:S△BCD:S△BAC=(BD:BC)2=1:4;故选:A.【点睛】此题主要考查的是直角三角形和相似三角形的性质;相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.6、D【解析】
先将化简为最简二次根式,,根据同类二次根式的定义得出a+1=2,求出a即可.【详解】∵与最简二次根式是同类二次根式∴a+1=2解得a=1故选:D【点睛】本题考查了最简二次根式和同类二次根式的定义,满足下列两个条件的二次根式,叫做最简二次根式,被开方数不含分母,被开方数中不含能开得尽方的因数或因式;把几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.7、B【解析】
利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【详解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=1.故选:B.【点睛】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.8、B【解析】试题解析:过点D作DF⊥AB于点F,
∵DE、CE分别是∠ADC、∠BCD的平分线,
∴∠ADE=∠CDE,∠DCE=∠BCE,
∵四边形ABCD是平行四边形,
∴AB∥DC,AD=BC=5,
∠CDE=∠DEA,∠DCE=∠CEB,
∴∠ADE=∠AED,∠CBE=∠BEC,
∴DA=AE=5,BC=BE=5,
∴AB=10,
则DF2=DE2-EF2=AD2-AF2,
故62-FE2=52-(5-EF)2,
解得:EF=3.6,
则DE==4.8,
故平行四边形ABCD的面积是:4.8×10=1.
故选B.9、C【解析】
根据二次根式的定义即可求解.【详解】A.,根号内含有分数,故不是最简二次根式;B.,根号内含有小数,故不是最简二次根式;C.,是最简二次根式;D.=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.10、D【解析】
设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.【详解】设这个多边形的边数为n,依题意得
(n-2)×180°=3×360°,
解得n=8,
∴这个多边形为八边形,
故选D.【点睛】此题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.11、A【解析】
点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=AB×BC=×4×5=10故选A.【点睛】本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC和CD的长,再用矩形面积公式求出矩形的面积.12、C【解析】
13,12,5正好是一组勾股数,根据勾股定理的逆定理即可判断△ABC是直角三角形,从而求解.【详解】∵52+122=169,132=169,∴52+122=132,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.故选:C.【点睛】本题主要考查了勾股定理的逆定理,两边的平方和等于第三边的平方,则这个三角形是直角三角形.对于常见的勾股数如:3,4,5或5,12,13等要注意记忆.二、填空题(每题4分,共24分)13、1【解析】
点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,代入可求出m、n,进而求代数式的值.【详解】解;把点A(1,m)、B(3,n)代入y=得:m=3,n=1∴m-3n+1=3-3×1+1=1.故答案为:1.【点睛】考查反比例函数图象上点的坐标特点,理解函数图象的意义,正确的代入和细心的计算是解决问题的前提.14、y=|x﹣a|﹣3≤a≤1【解析】
根据线段长求出函数解析式即可,函数图象与直线y=2相交时,把x用含有a的代数式表示出来,根据横坐标m的取值范围求出a的取值范围即可.【详解】解:∵点P(x,0),A(a,0),∴PA=|x﹣a|∴y关于x的函数的解析式为y=|x﹣a|∵y=|x﹣a|的图象与直线y=2相交∴|x﹣a|=2∴x=2+a或x=﹣2+a∵交点的横坐标m满足﹣5≤m≤3∴2+a≤3,﹣2+a≥﹣5∴﹣3≤a≤1故答案为y=|x﹣a|,﹣3≤a≤1.【点睛】本题考查根据题意列函数解析式,利用数形结合的思想得到a的取值范围是解题关键.15、.【解析】
根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【详解】根据二次根式被开方数必须是非负数的条件,得.【点睛】本题考查二次根式有意义的条件,牢记被开方数必须是非负数.16、.【解析】解:=;故答案为:.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.17、y=x+1.【解析】
直接利用原高度+上升的时间×1=海拔高度,进而得出答案.【详解】气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.故答案为:y=x+1.【点睛】此题主要考查了函数关系式,正确表示出上升的高度是解题关键.18、【解析】分析:先将二次根式化为最简,然后合并同类二次根式即可.详解:原式=3-2=.故答案为.点睛:本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.三、解答题(共78分)19、(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣3.【解析】
(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE=AF,即可得出结论;(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF=60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=3FH,CF=2CH,FH=3CH,设CH=x,则BE=CF=2x,FH=3x,GE=GF=2FH=23x,GH=3FH=3x,得出EH=4+x=23x+3x,解得:x=3﹣1,求出FH=3x=3﹣3即可.【详解】(1)解:△AEF是等边三角形,理由如下:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=AD,∠B=∠D,∵∠ABC=60°,∴∠BAD=120°,△ABC是等边三角形,∴AC=AB,∵点E是线段CB的中点,∴AE⊥BC,∴∠BAE=30°,∵∠EAF=60°,∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,在△BAE和△DAF中,∠B∴△BAE≌△DAF(ASA),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;故答案为:等边三角形;(2)证明:连接AC,如图2所示:同(1)得:△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC,∵∠EAF=60°,∴∠BAE=∠CAF,∵∠BCD=∠BAD=120°,∴∠ACF=60°=∠B,在△BAE和△CAF中,∠BAE∴△BAE≌△CAF(ASA),∴BE=CF;(3)解:同(1)得:△ABC和△ACD是等边三角形,∴AB=AC,∠BAC=∠ACB=∠ACD=60°,∴∠ACF=120°,∵∠ABC=60°,∴∠ABE=120°=∠ACF,∵∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,∠BAE∴△BAE≌△CAF(ASA),∴BE=CF,AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴∠AEF=60°,∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,∴∠AEB=45°,∴∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:则GE=GF,∠FGH=30°,∴FG=2FH,GH=3FH,∵∠FCH=∠ACF﹣∠ACB=60°,∴∠CFH=30°,∴CF=2CH,FH=3CH,设CH=x,则BE=CF=2x,FH=3x,GE=GF=2FH=23x,GH=3FH=3x,∵BC=AB=4,∴CE=BC+BE=4+2x,∴EH=4+x=23x+3x,解得:x=3﹣1,∴FH=3x=3﹣3,即点F到BC的距离为3﹣3.【点睛】本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.20、(I)见解析;(II)点的横坐标为12.【解析】
(I)将直线与直线联立方程求解,即可得到点A的坐标,然后可以在坐标系中标出点A;求出直线与x轴的交点B,连接AB即是直线y2.(II)用x表示出PQ的长度和Q点的横坐标,根据△POQ的面积等于60,用等面积法即可求出点Q的横坐标.【详解】(I)在中,令,则,解得:,∴与轴的交点的坐标为.由解得.所以点.过、两点作直线的图象如图所示.(II)∵点是直线在第一象限内的一点,∴设点的坐标为,又∥轴,∴点.∴.∵,又的面积等于60,∴,解得:或(舍去).∴点的横坐标为12.【点睛】本题主要是考查了一次函数.21、(1)50人;(2)0.2、10;(3)400人【解析】
(1)由C选项的频数及其频率可得总人数;
(2)根据频率=频数÷总人数可分别求得m、n的值;
(3)用总人数乘以样本中C、D选项的频率和即可得.【详解】(1)被调查的总人数为5÷0.1=50人;(2)m=10÷50=0.2、n=50×0.2=10;(3)估计全校学生中利用手机购物或玩游戏的共有800×(0.1+0.4)=400人.【点睛】考查频数分布表,解题的关键是掌握频率=频数÷总人数及样本估计总体思想的运用.22、见解析.【解析】
通过列出表格,画出函数图象即可.【详解】列表:画出函数y=2x-1的图象.如图所示.【点睛】此题考查一次函数的图象,解题关键在于掌握其性质定义.23、(1);(2)见解析.【解析】
(1)根据四边形的内角和是360°,即可得到结论;(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可.【详解】解:(1)∵四边形ABCD是“和谐四边形”,∠A+∠B+∠C+∠D=360°,∵∠B=135°,∴∠A=∠D=∠C=(360°−135°)=75°,故答案为:75°;(2)证明:∵四边形DEBF为平行四边形,∴∠E=∠F,且∠E+∠EBF=180°.∵DE=DA,DF=DC,∴∠E=∠DAE=∠F=∠DCF,∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,∴∠DAB=∠DCB=∠ABC,∴四边形ABCD是“和谐四边形”.【点睛】本题主要考查了翻折变换−折叠问题,四边形的内角和是360°,平行四边形的性质等,解题的关键是理解和谐四边形的定义.24、(1)平均数:260(件)中位数:240(件)众数:240(件)(2)不合理【解析】试题解析:解:(1)这15个人的平均数是:,中位数是:240,众数是240;(2)不合理,因为这15个人中只有4个人可以完成任务,大部分人都完不成任务.考点:平均数、中位数、众数点评:本题主要考查了平均数、中位数、众数.平均数、中位数、众数都反映了一组数据的集中趋势,但是平均数容易受到这组数据中的极端数数的影响,所以中位数和众数更具有代表性.25、(1)①BE=2;②证明见解析;(2)①BE=2;②S1:S2=1【解析】【分析】(1)①在矩形ABCD中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,由勾股定理求得CE的长,即可求得BE的长;②证明△CED≌△DEF,可得∠CED=∠FED,从而可得∠ADE=∠AED,即可得到AD=AE;(2)①分两种情况点E在线段BC上、点E在BC延长线上两种情况分别讨论即可得;②S1:S2=1,当BF//DE时,延长BF交AD于G,由已知可得到四边形BEDG是平行四边形,继而可得S△DEF=S平行四边形BEDG,S△BEF+S△DFG=S平行四边形BEDG,S△ABG=S△CDE,根据面积的知差即可求得结论.【详解】(1)①在矩形ABCD中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,∵DE=5,∴CE==3,∴BE=BC-CE=5-3=2;②在矩形ABCD中,∠DCE=90°,AD//BC,∴∠ADE=∠DEC,∠DCE=∠DFE,∵CE=EF,DE=DE,∴△CED≌△DEF(HL),∴∠CED=∠FED,∴∠ADE=∠AED,∴AD=AE;(2)①当点E在线段BC上时,AF=BF,如图所示:∴∠ABF=∠BAF,∵∠ABF+∠EBF=90°,∠BAF+∠BEF=90°,∴∠EBF=∠BEF,∴EF=BF,∴AF=EF,∵DF⊥AE,∴DE=AD=5,在矩形ABCD中,CD=AB=4,∠DCE=90°,∴CE=3,∴BE=5-3=2;当点E在BC延长线上时,AF=BF,如图所示,同理可证AF=EF,∵DF⊥AE,∴DE=AD=5,在矩形ABCD中,CD=AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业空间装修合同范例
- 国际学校装修保密合同
- 旅游景区休息区改造协议
- 会计师事务所翻新协议
- 化工行业股权转让居间合同
- 专卖店装修劳务分包协议
- 学校翻新工程装修合同范本
- 保障房混凝土配送合同
- 医疗建筑石材配送服务合同
- 体育馆装修普通合同
- 公共卫生突发事件应急处理与防治考核试卷
- 5.2 外力作用与地表形态高三地理一轮复习课件
- NB/T 11446-2023煤矿连采连充技术要求
- 护理美学-第一章 美学概述
- 空调管路设计规范
- 消防故障排查合同范本
- 2005劳动合同范本
- 汇川技术员工等级
- 岭南新天地案例分析
- 人教版七年级数学上册同步压轴题专题02数轴上的三种动点问题(学生版+解析)
- CAD设计制图智慧树知到答案2024年黑龙江农业工程职业学院(松北校区)
评论
0/150
提交评论