版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省保山市名校2024年八年级下册数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知直线l:y=-x+1与x轴交于点P,将l绕点P顺时针旋转90°得到直线l′,则直线l′的解析式为()A.y=x-1 B.y=2x-1 C.y=x-4 D.y=2x-42.已知点A的坐标为(3,﹣6),则点A所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.4.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=1.将腰CD以D为旋转中心逆时针旋转90°至DE,连结AE,则△ADE的面积是()A.32 B.2 C.525.已知实数a、b,若a>b,则下列结论正确的是()A.a+3<b+3 B.a-4<b-4 C.2a>2b D.6.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(h)后,船与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是()A.甲港与丙港的距离是90km B.船在中途休息了0.5小时C.船的行驶速度是45km/h D.从乙港到达丙港共花了1.5小时7.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B. C. D.28.下列分式中,无论取何值,分式总有意义的是()A. B. C. D.9.若二次根式有意义,则的取值范围是()A. B. C. D.10.如图1,在△ABC和△DEF中,AB=AC=m,DE=DF=n,∠BAC=∠EDF,点D与点A重合,点E,F分别在AB,AC边上,将图1中的△DEF沿射线AC的方向平移,使点D与点C重合,得到图2,下列结论不正确的是()A.△DEF平移的距离是m B.图2中,CB平分∠ACEC.△DEF平移的距离是n D.图2中,EF∥BC11.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠AED′的大小为()A.110° B.108° C.105° D.100°12.八年级某同学6次数学小测验的成绩分别为95分,80分,85分,95分,95分,85分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C.90分,95分 D.95分,85分二、填空题(每题4分,共24分)13.关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标是_____.14.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.15.如图,、、、分别是四边形各边的中点,若对角线、的长都是,则四边形的周长是______.16.如图是由5个边长为1的正方形组成了“十”字型对称图形,则图中∠BAC的度数是_________.17.当分式有意义时,x的取值范围是__________.18.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.三、解答题(共78分)19.(8分)如图,在4×3正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画线段EF,使得EF的长为,以AB,CD,EF三条线段能否构成直角三角形,并说明理由.20.(8分)武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间分成、、、四个等级(等:,等:,等:,等:;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:(1)组的人数是____人,并补全条形统计图.(2)本次调查的众数是_____等,中位数落在_____等.(3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.21.(8分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.22.(10分)在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;(2)求证:CD=BF+DF.23.(10分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.24.(10分)已知关于x的一元二次方程有实数根.(1)求k的取值范围;(2)若原方程的一个根是2,求k的值和方程的另一个根.25.(12分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.26.点向__________平移2个单位后,所对应的点的坐标是.
参考答案一、选择题(每题4分,共48分)1、D【解析】
首先根据题意求出点P的坐标,然后根据垂直的两条直线的k互为负倒数设出函数解析式,然后将点P的坐标代入得出答案.【详解】根据题意可得:点P的坐标为(2,0),折直线l′的解析式为:y=2x+b,将(2,0)代入可得:4+b=0,解得:b=-4,∴直线的解析式为y=2x-4,故选D.【点睛】本题主要考查的是一次函数解析式的求法,属于中等难度的题型.明确垂直的两条直线的比例系数互为负倒数是解题的关键.2、D【解析】
在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.【详解】横纵坐标同是正数在第一象限,横坐标负数纵坐标正数在第二象限,横纵坐标同是负数在第三象限,横坐标正数纵坐标负数在第四象限,点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.【点睛】此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.3、D【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.是中心对称图形,不是轴对称图形,选项不符合题意;
B.是轴对称图形,不是中心对称图形,选项不符合题意;
C.不是中心对称图形,也不是轴对称图形,选项不符合题意;
D.是中心对称图形,也是轴对称图形,选项符合题意,
故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.4、A【解析】
作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,首先利用旋转的性质证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,即可求出三角形ADE的面积.【详解】解:如图所示,作EF⊥AD交AD延长线于点F,作DG⊥BC于点G,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=3,BC=1,∴CG=BC-AD=1-3=1,∴EF=1,∴△ADE的面积是12故选A.【点睛】本题考查了梯形的性质、旋转的性质和全等三角形的判定与性质,对于旋转来说,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①旋转中心;②旋转方向;③旋转角度.本题证明△DCG与△DEF全等正是充分运用了旋转的性质.5、C【解析】
根据不等式的性质逐个判断即可.(1不等式两边同时加或减去同一个整式,不等号方向不变;2不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;3不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.)【详解】根据a>b可得A错误,a+3>b+3B错误,a-4>b-4C正确.D错误,故选C.【点睛】本题主要考查不等式的性质,属于基本知识,应当熟练掌握.6、D【解析】
由船行驶的函数图象可以看出,船从甲港出发,0.5h后到达乙港,ah后到达丙港,进而解答即可.【详解】解:A、甲港与丙港的距离是30+90=120km,错误;B、船在中途没有休息,错误;C、船的行驶速度是,错误;D、从乙港到达丙港共花了小时,正确;故选D.【点睛】此题主要考查了函数图象与实际结合的问题,利用数形结合得出关键点坐标是解题关键,同学们应加强这方面的训练.7、C【解析】试题解析:设,因为,,所以,在与中,所以∽,那么,,则,解得,故本题应选C.8、A【解析】
根据分式有意义的条件是分母不等于零判断.【详解】解:A、∵a2≥0,∴a2+1>0,∴总有意义;B、当a=−时,2a+1=0,无意义;C、当a=±1时,a2−1=0,无意义;D、当a=0时,无意义;无意义;故选:A.【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.9、C【解析】试题分析:由题意得,,解得.故选C.考点:二次根式有意义的条件.10、C【解析】
根据平移的性质即可得到结论.【详解】∵AD=AC=m,∴△DEF平移的距离是m,故A正确,C错误,∵AB=AC,∴∠ACB=∠ABC,∵DE∥AB,∴∠EDB=∠ABC,∴∠ACB=∠ECB,∴CB平分∠ACE,故B正确;由平移的性质得到EF∥BC,故D正确.故选C.【点睛】本题考查了平移的性质,等腰三角形的性质,平行线的性质,熟练正确平移的性质是解题的关键.11、B【解析】
由平行四边形的性质可得∠B=∠D=52°,由三角形的内角和定理可求∠DEA的度数,由折叠的性质可求∠AED'=∠DEA=108°.【详解】∵四边形ABCD是平行四边形,∴∠B=∠D=52°,且∠DAE=20°,∴∠DEA=180°﹣∠D=∠DAE=108°,∵将△ADE沿AE折叠至△AD′E处,∴∠AED'=∠DEA=108°.故选:B.【点睛】本题主要考查平行四边形的性质,三角形的内角和定理以及折叠的性质,掌握折叠的性质是解题的关键.12、B【解析】
根据题目中的数据,可以得到这组数据的众数和中位数,本题得以解决.【详解】解:将这6位同学的成绩从小到大排列为80、85、85、95、95、95,由于95分出现的次数最多,有3次,即众数为95分,第3、4个数的平均数为:85+952=90,即中位数为90故选:B.【点睛】本题考查众数、中位数,解答本题的关键是明确众数、中位数的定义,会求一组数据的众数、中位数.二、填空题(每题4分,共24分)13、(m,0).【解析】分析:关于x的一元一次方程ax+b=0的根是x=m,即x=m时,函数值为0,所以直线过点(m,0),于是得到一次函数y=ax+b的图象与x轴交点的坐标.详解:关于x的一元一次方程ax+b=0的根是x=m,则一次函数y=ax+b的图象与x轴交点的坐标为(m,0).故答案为:(m,0).点睛:本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.14、24.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB=∠DAB,∠PBA=∠ABC,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AB∥CD,∴∠PAB=∠DPA,∴∠DAP=∠DPA,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24.考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.15、【解析】
利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.【详解】∵E,F,G,H,是四边形ABCD各边中点∴HG=AC,EF=AC,GF=HE=BD∴四边形EFGH的周长是HG+EF+GF+HE=(AC+AC+BD+BD)=×(20+20+20+20)=40(cm).故答案为40cm.【点睛】本题考查了三角形的中位线定理,解决本题的关键是找到四边形的四条边与已知的两条对角线的关系.三角形中位线的性质为我们证明两直线平行,两条线段之间的数量关系又提供了一个重要的依据.16、45.【解析】
连接BC,通过计算可得AB=BC,再利用勾股定理逆定理证明△ABC是等腰直角三角形,从而得出结果.【详解】解:连接BC,因为每个小正方形的边长都是1,由勾股定理可得,,,∴AB=BC,,∴∠ABC=90°.∴∠BAC=∠BCA=45°.故答案为45°.【点睛】本题考查了勾股定理及其逆定理、等腰直角三角形的判定和性质,解题的关键是连接BC,构造等腰直角三角形,而通过作辅助线构造特殊三角形也是解决角度问题的常见思路和方法.17、【解析】
分式有意义的条件为,即可求得x的范围.【详解】根据题意得:,解得:.答案为:【点睛】本题考查了分式有意义的条件,熟练掌握分母不为0是解题的关键.18、8【解析】
先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.【详解】(),由勾股定理得(),则玻璃棒露在容器外的长度的最小值是().故答案为.【点睛】考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.三、解答题(共78分)19、;.(2)以AB、CD、EF三条线段可以组成直角三角形【解析】
(1)利用勾股定理求出AB、CD的长即可;(2)根据勾股定理的逆定理,即可作出判断.【详解】(1)AB==;CD==2.(2)如图,EF==,∵CD2+EF2=8+5=13,AB2=13,∴CD2+EF2=AB2,∴以AB、CD、EF三条线段可以组成直角三角形.【点睛】本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.20、(1)50;(2)众数是B等,中位数落在C等;(3)3325人.【解析】
(1)根据A的人数除以A所占的百分,可得调查的总人数,根据有理数的减法,可得C的人数;(2)根据众数的定义,中位数的定义,可得答案;(3)根据样本估计总体,可得答案.【详解】(1)调查的总人数40÷20%=200人,C组的人数=200﹣40﹣100﹣10=50,补充如图:(2)本次调查的众数是100,即B等,中位数是=75,落在C等;(3)3500×=3325人.答:该校今年有3500名学生,达到国家规定的阅读时间的人数约有3325人.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21、△BCD是直角三角形【解析】
首先在Rt△BAD中,利用勾股定理求出BD的长,再根据勾股定理逆定理在△BCD中,证明△BCD是直角三角形.【详解】△BCD是直角三角形,理由:在Rt△BAD中,∵AB=AD=2,∴BD==,在△BCD中,BD2+CD2=()2+12=9,BC2=32=9,∴BD2+CD2=BC2,△BCD是直角三角形.【点睛】此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.22、(1)3+(2)见解析【解析】
(1)过点E作EH⊥AB交AB于点H.分别求出AH,BH即可解决问题;(2)连接EF,延长FE交AB与点M.想办法证明△BMF是等腰三角形即可解决问题;【详解】解:(1)过点E作EH⊥AB交AB于点H.∵AD∥BC,AB∥CD,∴四边形ABCD为平行四边形.∴AB=DC,∠DAB=∠DBC,在△CGD和△AEB中,,∴△CGD≌△AEB,∴∠DGC=∠BEA,∴∠DGB=∠BED,∵AD∥BC,∴∠EDG+∠DGB=180°,∴∠EDG+∠BED=180°∴EB∥DG,∴四边形BGDE为平行四边形,∴BG=ED,∵G是BD的中点,∴BG=BC,∴BC=AD,ED=BG=AD,∵BC=2,∴AE=AD=,在Rt△AEH中,∵∠EAB=45°,sin∠EAB=sin45°=,∴EH=,∵∠EHA=90°,∴△AHE为等腰直角三角形,∴AH=EH=,∵∠F=60°,∴∠FBA=60°,∵∠EBA=∠EBF,∴∠EBA=30°,在Rt△EHB中,tan∠EBH=tan30°=,∴HB=3,∴AB=3+.(2)连接EF,延长FE交AB与点M.∵∠A=∠EDF,AE=DE,∠AEM=∠DEF,∴△AEM≌△DEF(ASA),∴DF=AM,ME=EF,又∵∠EBA=∠EBF,∴△MBF是等腰三角形∴BF=BM,又∵AB=AM+BM,∴CD=BF+DF.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形或全等三角形解决问题,属于中考常考题型.23、(1)A种树每棵2元,B种树每棵80元;(2)当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元.【解析】
(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【详解】解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得,解得,答:A种树木每棵2元,B种树木每棵80元.(2)设购买A种树木x棵,则B种树木(2-x)棵,则x≥3(2-x).解得x≥1.又2-x≥0,解得x≤2.∴1≤x≤2.设实际付款总额是y元,则y=0.9[2x+80(2-x)].即y=18x+73.∵18>0,y随x增大而增大,∴当x=1时,y最小为18×1+73=8550(元).答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8550元.24、(1);(2),.【解析】
(1)根据根的判别式可得关于k的不等式,解不等式即可得出的取值范围;(2)把代入方程得出的值,再解方程即可.【详解】(1)关于的一元二次方程有实数根,,,,的取值范围;(2)把代入,得,方程的两根为,,综上所述,.【点睛】本题考查了根与系数的关系以及根的判别式,掌握一元二次方程的解法是解题的关键.25、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】
试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《家庭护士》课件
- 2023-2024学年福建省福州市福清市高一(下)期中地理试卷
- 高速公路施工总承包合同段春节节后复工工作计划及保障措施
- 2024年山东省日照市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年福建省福州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年四川省眉山市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2021年贵州省安顺市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 湖南省张家界市(2024年-2025年小学六年级语文)部编版摸底考试(上学期)试卷及答案
- 2024年ATM机项目资金需求报告代可行性研究报告
- 2025年PS铝合金板项目立项申请报告模板
- 400V开关柜操作及维护手册(双语)
- 教师业务档案(表格模板)
- 装修施工人员出入证汇总表
- 招标项目评分表
- 政治学原理-【综合版】-复旦大学
- 全国应急管理普法知识竞赛题库及答案
- 工程结算申请书范文
- 安全生产检查记录表样本
- 粒子探测技术复习
- 2022年安全生产和环保工作会议主持词范文
- 墙体节能工程后置锚固件锚固力现场拉拔试验报告
评论
0/150
提交评论