版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市庐阳区45中学2024届八年级数学第二学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列方程中,判断中错误的是()A.方程是分式方程 B.方程是二元二次方程C.方程是无理方程 D.方程是一元二次方程2.直角三角形两条直角边分别是和,则斜边上的中线等于()A. B.13 C.6 D.3.下列命题中正确的是A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形4.如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是()A.2 B.1 C. D.5.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.6.当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.7.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是()A. B.C. D.8.若函数的图象过,则关于此函数的叙述不正确的是()A.y随x的增大而增大 B.C.函数图象经过原点 D.函数图象过二、四象限9.点P是△ABC内一点,且P到△ABC的三边距离相等,则P是△ABC哪三条线的交点()A.边的垂直平分线 B.角平分线C.高线 D.中位线10.如图,已知四边形ABCD是边长为4的正方形,E为AB的中点,将△ADE绕点D沿逆时针方向旋转后得到△DCF,连接EF,则EF的长为()A.2 B.2 C.2 D.211.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一 B.方案二 C.方案三 D.方案四12.利用一次函数y=kx+b(k≠0)的图象解关于x的不等式kx+b≤0,若它的解集是x≥﹣2,则一次函数y=kx+b的图象为()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,菱形的顶点在轴上,顶点在反比例函数的图象上,若对角线,则的值为__________.14.在一次“人与环境”知识竞赛中,共有25个题,每题四个答案,其中只有一个答案正确,每选对一题得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少要答对______题15.如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,则等腰梯形ABCD的面积为__________cm1.16.分解因式:2a3﹣8a=________.17.如图,在中,对角线,相交于点,添加一个条件判定是菱形,所添条件为__________(写出一个即可).18.如图,于,于,且,,,则_______.三、解答题(共78分)19.(8分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.20.(8分)甲、乙两车间同时开始加工—批服装.从开始加工到加工完这批服装甲车间工作了小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为(件).甲车间加工的时间为(时),与之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件;(2)求乙车间维修设备后,乙车间加工服装数量与之间的函数关系式;(3)求甲、乙两车间共同加工完1140件服装时甲车间所用的时间.21.(8分)已知关于x的一元二次方程.(1)当m为何值时,方程有两个不相等的实数根;(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.22.(10分)如图,是的中位线,过点作交的延长线于点,求证:.23.(10分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=a,CF=b,求BE的长.24.(10分)在倡导“社会主义核心价值观”演讲比赛中,某校根据初赛成绩在七、八年级分别选出10名同学参加决赛,对这些同学的决赛成绩进行整理分析,绘制成如下团体成绩统计表和选手成绩折线统计图:七年级八年级平均数85.7_______众数______________方差37.427.8根据上述图表提供的信息,解答下列问题:(1)请你把上面的表格填写完整;(2)考虑平均数与方差,你认为哪个年级的团体成绩更好?(3)假设在每个年级的决赛选手中分别选出2个参加决赛,你认为哪个年级的实力更强一些?请说明理由.25.(12分)如图,在△ABC中,AB=6,AC=8,D是AB的中点.若在AC上存在一点E,使得△ADE与原三角形相似.(1)确定E的位置,并画出简图:(2)求AE的长.26.近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:(收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:初一年级8858449071889563709081928484953190857685初二年级7582858576876993638490856485919668975788(整理数据)按如下分段整理样本数据:分段年级0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100初一年级a137b初二年级14285(分析数据)对样本数据边行如下统计:统计量年级平均数中位数众数方差初一年级78c90284.6初二年级8185d126.4(得出结论)(1)根据统计,表格中a、b、c、d的值分别是、、、.(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有人.(3)根据以上数据,你认为(填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).
参考答案一、选择题(每题4分,共48分)1、C【解析】
逐一进行判断即可.【详解】A.方程是分式方程,正确,故该选项不符合题意;B.方程是二元二次方程,正确,故该选项不符合题意;C.方程是一元二次方程,错误,故该选项符合题意;D.方程是一元二次方程,正确,故该选项不符合题意;故选:C.【点睛】本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.2、A【解析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线等于.故选:A.【点睛】此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.3、D【解析】试题解析:对角线互相垂直平分的四边形是菱形;对角线互相垂直的平行四边形是菱形;故选D.点睛:菱形的判定方法有:有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边都相等的四边形是菱形.4、B【解析】
证明四边形ABDE是平行四边形,得出AB=DE,证出CE=2AB,求出∠CEF=30°,得出CE=2CF=2,即可得出AB的长.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BCD=∠BAD=120°,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∴CE=2AB,∵∠BCD=120°,∴∠ECF=60°,∵EF⊥BC,∴∠CEF=30°,∴CE=2CF=2,∴AB=1;故选:B.【点睛】本题考查平行四边形的性质与判定、直角三角形的性质;熟练掌握平行四边形的判定与性质是解决问题的关键.5、D【解析】试题解析:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选D.考点:动点问题的函数图象.6、C【解析】
根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【点睛】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.7、A【解析】
设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.【详解】解:设每人每小时的绿化面积为x平方米,
由题意得,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.8、A【解析】
将(2,-3)代入一次函数解析式中,求出一次函数解析式,根据解析式得出一次函数图像与性质即可得出答案.【详解】将(2,-3)代入中2k=-3,解得∴一次函数的解析式为:A:根据解析式可得y随x的增大而减小,故A选项正确;B:,故B选项错误;C:为正比例函数,图像经过原点,故C选项错误;D:根据解析式可得函数图像经过二、四象限,故D选项错误.故答案选择A.【点睛】本题考查了用待定系数法求一次函数解析式以及根据一次函数解析式判断函数的图像与性质.9、B【解析】
根据到角的两边的距离相等的点在角的平分线上解答.【详解】∵P到△ABC的三边距离相等,∴点P在△ABC的三条角平分线上,∴P是△ABC三条角平分线的交点,故选:B.【点睛】本题考查的是角平分线的性质,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.10、D【解析】
先利用勾股定理计算出DE,再根据旋转的性质得∠EDF=∠ADC=90°,DE=DF,则可判断△DEF为等腰直角三角形,然后根据等腰直角三角形的性质计算EF的长.【详解】∵E为AB的中点,AB=4,∴AE=2,∴DE==2.∵四边形ABCD为正方形,∴∠A=∠ADC=90°,∴∠ADE+∠EDC=90°.∵△ADE绕点D沿逆时针方向旋转后得到△DCF,∴∠ADE=∠CDF,DE=DF,∴∠CDF+∠EDC=90°,∴△DEF为等腰直角三角形,∴EF=DE=2.故选D.【点睛】本题主要考查了旋转的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键.11、D【解析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.【详解】解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.故选:D.【点睛】此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.12、C【解析】
找到当x≥﹣2函数图象位于x轴的下方的图象即可.【详解】∵不等式kx+b≤0的解集是x≥﹣2,∴x≥﹣2时,y=kx+b的图象位于x轴的下方,C选项符合,故选:C.【点睛】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.二、填空题(每题4分,共24分)13、-1【解析】
先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.【详解】解:∵菱形的两条对角线的长分别是6和4,
∴C(-3,4),
∵点C在反比例函数y=的图象上,∴k=(-3)×4=-1.
故答案为:-1【点睛】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.14、19【解析】设他至少应选对x道题,则不选或错选为25−x道题.依题意得4x−2(25−x)⩾60得x⩾18又∵x应为正整数且不能超过25所以:他至少要答对19道题.故答案为19.15、2【解析】
根据等腰梯形的性质、梯形面积公式求解即可.【详解】∵四边形ABCD是等腰梯形,∴∴等腰梯形ABCD的面积故答案为:2.【点睛】本题考查了梯形的面积问题,掌握等腰梯形的性质、梯形面积公式是解题的关键.16、2a(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.17、AD=AB【解析】
根据菱形的判定定理即可求解.【详解】∵四边形ABCD为平行四边形,所以可以添加AD=AB,即可判定是菱形,故填:AD=AB.【点睛】此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.18、140°【解析】
由“”可证Rt△ABD≌Rt△ACD,可得,由三角形外角的性质可求的度数.【详解】解:,,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),.故答案为:.【点睛】本题考查了全等三角形的判定和性质,外角的性质,熟练运用全等三角形的判定是本题的关键.三、解答题(共78分)19、(1)菱形(2)1【解析】
(1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形;(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.【详解】(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)∵四边形ABCD是矩形,∴AC===5,∴CO=OD=,∴四边形OCED的周长=4×=1.【点睛】此题考查了菱形的判定与性质以及矩形的性质.根据连线的判定定理证得四边形CODE是菱形是解此题的关键.20、(1)90,1300;(2);(3)1.【解析】
(1)由图像可得点可得答案;(2)由图可知乙车间每小时加工服装:140÷2=70件,求解维修设备后坐标为,再把(4,140)、(9,490)代入乙车间的函数关系式y=kx+b,从而可得答案;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于,求出x值,可得答案.【详解】解:(1)由图像可得点可得甲小时加工了件服装,所以:甲车间每小时加工服装件数为件,由图像可得点,可得乙加工的总数为件,所以这批服装共有件.故答案为:(2)由图可知乙车间每小时加工服装:140÷2=70件,所以:乙车间共需要:490÷70=7小时,维修设备时间:9-7=2小时,∴维修设备后坐标为,设乙车间的函数关系式为:y=kx+b,代入点(4,140)、(9,490),得:解得,所以:y=70x﹣140;(3)设甲车间代入点(9,110)得:则9m=110,解得:m=90,所以:由y+y1=1140得:70x﹣140+90x=1140解得:x=1答:甲、乙两车间共同加工完1140件服装时甲车间所用时间是1小时.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.21、(1)m>﹣;(2)m=﹣1.【解析】
(1)根据方程的系数结合根的判别式,即可得出△=1m+17>0,解之即可得出结论;(2)设方程的两根分别为a、b,根据根与系数的关系结合菱形的性质,即可得出关于m的一元二次方程,解之即可得出m的值,再根据a+b=﹣2m﹣1>0,即可确定m的值.【详解】解:(1)∵方程有两个不相等的实数根,∴△==1m+17>0,解得:m>﹣,∴当m>﹣时,方程有两个不相等的实数根.(2)设方程的两根分别为a、b,根据题意得:a+b=﹣2m﹣1,ab=.∵2a、2b为边长为5的菱形的两条对角线的长,∴==2m2+1m+9=52=25,解得:m=﹣1或m=2.∵a>0,b>0,∴a+b=﹣2m﹣1>0,∴m=﹣1.若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m的值为﹣1.【点睛】本题考查了根的判别式、根与系数的关系、菱形的性质以及解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=1m+17>0;(2)根据根与系数的关系结合菱形的性质,找出关于m的一元二次方程.22、见解析.【解析】
根据题意可知,本题考查的是三角形中位线定理和三角形全等的性质,根据三角形的中位线平行于第三边且等于第三边的一半和全等三角形对应边相等,进行推理证明.【详解】证明:∵是的中位线,∴.∵,∴,,∴,∴.【点睛】本题解题关键:熟练运用三角形中位线定理与全等三角形的性质.23、(1)见详解;(2).【解析】
(1)由平行四边形的性质和角平分线的性质,证明∠EBC+∠FCB=90°即可解决问题;(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.构造特殊四边形菱形,利用菱形的性质,结合勾股定理即可解决问题;【详解】(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵BE,CF分别是∠ABC,∠BCD的平分线,
∴∠EBC=∠ABC,∠FCB=∠BCD,
∴∠EBC+∠FCB=90°,
∴∠BGC=90°.
即BE⊥CF.(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.
∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABHE是菱形,∴AH,BE互相垂直平分;
∵BE⊥CF,∴AH∥CF,∴四边形AHCF是平行四边形,∴AP=;在Rt△ABP中,由勾股定理,得:,∴.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造特殊四边形解决问题.24、(1)八年级成绩的平均数1.7,七年级成绩的众数为80,八年级成绩的众数为1;(2)八年级团体成绩更好些;(3)七年级实力更强些.【解析】
(1)通过读图即可,即可得知众数,再根据图中数据即可列出求平均数的算式,列式计算即可.(2)根据方差的意义分析即可.(3)分别计算两个年级前两名的总分,得分较高的一个班级实力更强一些.【详解】解:(1)由折线统计图可知:七年级10名选手的成绩分别为:80,87,89,80,88,99,80,77,91,86;八年级10名选手的成绩分别为:1,97,1,87,1,88,77,87,78,88;八年级平均成绩=(1+97
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度软件开发合同标的及开发要求3篇
- 2024年度环保设备制造安装合同
- 2024年度智慧城市系统开发合同4篇
- 2024版:企业员工暂停薪资留职合同2篇
- 二手钢琴买卖合同书(2024版)3篇
- 二零二四年度建筑工程混凝土供应计划合同3篇
- 脑出血的康复治疗
- 二零二四年度广告位租赁与使用合同3篇
- 2024年三人合租租房合同范本下载2篇
- 2024年度郑州防弹玻璃岗亭市场推广与销售合同2篇
- 2024年“国际档案日”档案知识竞赛题目和答案
- 2023-2024学年广东省深圳市福田区八年级(上)期末英语试卷
- 河南省安阳市林州市湘豫名校联考2024-2025学年高三上学期11月一轮诊断考试 英语 含解析
- 2024-2030年中国保理行业深度调研及发展战略建议报告
- 公共场所反恐演练预案
- 行政职业能力测试真题2008年
- 骨科特殊检查课件
- 2024秋期河南开放大学本科《消费者权益保护法》一平台无纸化考试(形考任务1至3+我要考试)试题及答案
- 三级综合医院评审标准(2024年版)
- 2024年国家公务员考试《行测》真题(行政执法)
- 英语-浙江省精诚联盟2024学年高一第一学期10月联考试题和答案
评论
0/150
提交评论