版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省定州市杨家庄初级中学数学八年级下册期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列计算正确的是()A.×= B.+= C. D.-=2.某班位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是()尺码数人数A. B. C. D.3.下列命题中正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形4.下列方程中有一根为3的是()A.x2=3 B.x2﹣4x﹣3=0C.x2﹣4x=﹣3 D.x(x﹣1)=x﹣35.若一个正n边形的每个内角为144°,则n等于()A.10 B.8 C.7 D.56.如果是二次根式,那么x应满足的条件是()A.x≠8 B.x<8 C.x≤8 D.x>0且x≠87.如图,在中,于点,,则的度数是()A. B. C. D.8.满足下述条件的三角形中,不是直角三角形的是A.三个内角之比为1:2:3 B.三条边长之比为1::C.三条边长分别为,,8 D.三条边长分别为41,40,99.人体血液中,红细胞的直径约为0.0000077m.用科学记数法表示0.0000077m是()A.0.77×10﹣5 B.7.7×10﹣5 C.7.7×10﹣6 D.77×10﹣710.已知一次函数图像如图所示,点在图像上,则与的大小关系为()A. B. C. D.11.下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm212.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P的坐标是()A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)二、填空题(每题4分,共24分)13.某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线________.14.若一次函数的函数值随的增大而增大,则的取值范围是_____.15.不等式的正整数解有________个.16.一次函数y=-3x+a的图像与两坐标轴所围成的三角形面积是6,则a的值为_________.17.如图,在正方形中,是边上的点.若的面积为,,则的长为_________.18.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a与b的大小关系是_____.三、解答题(共78分)19.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.20.(8分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,B、D分别在轴负半轴、轴正半轴上,点E是轴的一个动点,连接CE,以CE为边,在直线CE的右侧作正方形CEFG.(1)如图1,当点E与点O重合时,请直接写出点F的坐标为_______,点G的坐标为_______.(2)如图2,若点E在线段OD上,且OE=1,求正方形CEFG的面积.(3)当点E在轴上移动时,点F是否在某条直线上运动?如果是,请求出相应直线的表达式;如果不是,请说明理由.21.(8分)为鼓励学生积极参加体育锻炼,某学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生所穿运动鞋的号码,绘制了如下的统计图①和图②(不完整).请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值为;(2)请补全条形统计图,并求本次调查样本数据的众数和中位数;(3)根据样本数据,若学校计划购买400双运动鞋,建议购买35号运动鞋多少双?22.(10分)如图,点O为等边三角形ABC内一点,连接OA,OB,OC,将线段BO绕点B顺时针旋转60°到BM,连接CM,OM.(1)求证:AO=CM;(2)若OA=8,OC=6,OB=10,判断△OMC的形状并证明.23.(10分)已知:,求得值.24.(10分)小聪从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是小聪离家的距离(单位:)与时间(单位:)的图象。根据图象回答下列问题:(1)体育场离小聪家______;(2)小聪在体育场锻炼了______;(3)小聪从体育场走到文具店的平均速度是______;(4)小聪在返回时,何时离家的距离是?25.(12分)如图,在中,;线段是由线段绕点按逆时针方向旋转得到,是由沿方向平移得到,且直线过点.(1)求的大小.(2)求的长.26.如图,C地到A,B两地分别有笔直的道路,相连,A地与B地之间有一条河流通过,A,B,C三地的距离如图所示.(1)如果A地在C地的正东方向,那么B地在C地的什么方向?(2)现计划把河水从河道段的点D引到C地,求C,D两点间的最短距离.
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据二次根式的运算即可判断.【详解】A.×=,正确;B.+不能计算,故错误;C.,故错误;D.-=,故错误;故选A.【点睛】此题主要考查二次根式的计算,解题的关键是熟知二次根式的运算法则.2、C【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了10次,次数最多,所以众数为1,
一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1.
故选:C.【点睛】本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法.3、C【解析】
要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.两组对边平行的四边形是平行四边形;有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;有一组邻边相等的平行四边形是菱形;对角线互相垂直平分且相等的四边形是正方形.【详解】A.应为两组对边平行的四边形是平行四边形;B.有一个角是直角的四边形是矩形、直角梯形、总之,只要有一个角是直角即可;C.符合菱形定义;D.应为对角线互相垂直平分且相等的四边形是正方形.故选:C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.4、C【解析】
利用一元二次方程解的定义对各选项分别进行判断.【详解】解:当x=3时,x2=9,所以x=3不是方程x2=3的解;当x=3时,x2﹣4x﹣3=9﹣12﹣3=﹣6,所以x=3不是方程x2﹣4x﹣3=0的解;当x=3时,x2﹣4x=9﹣12=﹣3,所以x=3是方程x2﹣4x=﹣3的解;当x=3时,x(x﹣1)=6,x﹣3,0,所以x=3是方程x(x﹣1)=x﹣3的解.故选:C.【点睛】本题考查了一元二次方程根的定义,即把根代入方程此时等式成立5、A【解析】
根据多边形的内角和公式列出关于n的方程,解方程即可求得答案.【详解】∵一个正n边形的每个内角为144°,∴144n=180×(n-2),解得:n=10,故选A.【点睛】本题考查了多边形的内角和公式,熟练掌握多边形的内角和公式是解题的关键.6、C【解析】根据二次根式的性质,被开方数大于等于0可得:,解得:,故选C.7、B【解析】
由四边形ABCD是平行四边形,根据平行四边形的对角相等,可得∠D=∠B=55°,又因为AE⊥CD,可得∠DAE=180°-∠D-∠AED=35°.【详解】解:∵四边形ABCD是平行四边形,
∴∠D=∠B=55°,
∵AE⊥CD,
∴∠AED=90°,
∴∠DAE=180°-∠D-∠AED=35°.
故选:B.【点睛】本题考查了平行四边形的性质:平行四边形的对角相等,还考查了垂直的定义与三角形内角和定理.题目比较简单,解题时要细心.8、C【解析】
根据勾股定理的逆定理逐项判断即可.【详解】解:A、根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B、,其符合勾股定理的逆定理,所以是直角三角形;C、,不符合勾股定理的逆定理,所以不是直角三角形;D、,符合勾股定理的逆定理,所以是直角三角形;故选C.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.9、C【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:故选C.10、A【解析】
根据图像y随x增大而减小,比较横坐标的大小,再判断纵坐标的大小.【详解】根据图像y随x增大而减小1<3故选A【点睛】本题考查一次函数图像上的坐标特征,解题关键在于判断y与x的关系.11、D【解析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.【详解】根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F的面积之和为3个G的面积.∵M的面积是61=36cm1,∴A、B、C、D、E、F的面积之和为36×3=108cm1.故选D.【点睛】考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.12、D【解析】
如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【详解】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,∠EAP'=∠EBP∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.【点睛】此题考查全等三角形的判断与性质,正方形的性质,解题关键在于作辅助线.二、填空题(每题4分,共24分)13、20cm【解析】
根据等腰梯形的性质及三角形中位线的性质可推出四边形EFGH为菱形,根据菱形的性质可求得其边长,再根据三角形中位线的性质即可求得梯形对角线AC的长度.【详解】连接BD∵四边形ABCD是等腰梯形∴AC=BD∵各边的中点分别是E.F.G、H∴HG=AC=EF,EH=BD=FG∴HG=EH=EF=FG,∴四边形EFGH是菱形∵四边形EFGH场地的周长为40cm∴EF=10cm∴AC=20cm【点睛】本题考查菱形的判定及等腰梯形的性质,熟练掌握菱形的基本性质是解题关键.14、k>2【解析】
试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.【详解】根据题意可得:k-2>0,解得:k>2.【点睛】考点:一次函数的性质;一次函数的定义15、4【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【详解】解:解得:不等式的解集是,故不等式的正整数解为1,2,3,4,共4个.故答案为:4.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16、±6【解析】
先根据坐标轴上点的坐标特征得到直线与坐标轴的交点坐标,再根据三角形面积公式得,然后解关于a的绝对值方程即可.【详解】解:当y=0时,y=-3x+a=0,解得x=,则直线与x轴的交点坐标为(,0);当x=0时,y=-3x+a=a,则直线与y轴的交点坐标为(0,a);所以,解得:a=±6.故选答案为:±6.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.17、【解析】
过E作EM⊥AB于M,利用三角形ABE的面积进行列方程求出AB的长度,再利用勾股定理求解BE的长度即可.【详解】过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为4.5,∴×AB×EM=4.5,解得:EM=3,即AD=DC=BC=AB=3,∵DE=1∴CE=2,由勾股定理得:BE=.故答案为【点睛】本题考查了正方形的性质、三角形的面积及勾股定理,掌握正方形的性质及勾股定理是解题的关键.18、a>b【解析】试题解析:∵点A(-1,a),B(2,b)在函数y=-3x+4的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为a>b.三、解答题(共78分)19、(1)证明见解析;(2)1.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.20、(1)(2)(3)是,理由见解析.【解析】
(1)利用四边形OBCD是边长为4的正方形,正方形CEFG,的性质可得答案,(2)利用勾股定理求解的长,可得面积,(3)分两种情况讨论,利用正方形与三角形的全等的性质,得到的坐标,根据坐标得到答案.【详解】解:(1)四边形OBCD是边长为4的正方形,正方形CEFG,三点共线,故答案为:(2)由正方形CEFG的面积(3)如图,当在的左边时,作于,正方形CEFG,四边形OBCD是边长为4的正方形,在与中,设①+②得:在直线上,当在的右边时,同理可得:在直线上.综上:当点E在轴上移动时,点F是在直线上运动.【点睛】本题考查的是正方形的性质,三角形的全等的判定与性质,勾股定理的应用,点的移动轨迹问题,即点在一次函数的图像上移动,掌握以上知识是解题的关键.21、(1)40,15;(2)见解析;(3)120双【解析】
(1)根据统计图中的数据可以得到调查的总人数和m的值;
(2)根据(1)中的结果可以求得34号运动鞋的人数,从而可以将条形统计图补充完整,进而得到相应的众数和中位数;
(3)根据统计图中的数据可以解答本题.【详解】(1)12÷30%=40,
m%=×100%=15%,
故答案为:40,15;
(2)34号运动鞋为:40-12-10-8-4=6,
补全的条形统计图如图所示,由条形统计图可得,本次调查样本数据的众数和中位数分别是:35号、36号;
(3)400×30%=120(双),
答:建议购买35号运动鞋120双.【点睛】考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22、(1)见解析(2)直角三角形,证明见解析【解析】
(1)根据“BO绕点B顺时针旋转60°到BM”可知∠OBM=60°,OB=OM,即可证明△AOB≌△CMB,从而得到答案;(2)由(1)可知AO=CM,根据OB=BM,∠OBM=60°,可知△OBM为等边三角形,从而得到OB=OM,根据勾股定理的逆定理即可得到答案.【详解】(1)证明:∵BO绕点B顺时针旋转60°到BM∴∠OBM=60°,OB=BM,∵△ABC为等边三角形∴∠ABC=60°,AB=CB∴∠ABO+∠OBC=∠CBM+∠OBC=60°∴∠ABO=∠CBM,在△AOB和△CMB中,∴△AOB≌△CMB(SAS),∴AO=CM.(2)△OMC是直角三角形;理由如下:∵BO绕点B顺时针旋转60°到BM∴∠OBM=60°,OB=BM,∴△OBM为等边三角形∴OB=OM=10由(1)可知OA=CM=8在△OMC中,OM2=100,OC2+CM2=62+82=100,∴OM2=OC2+CM2,∴△OMC是直角三角形.【点睛】本题考查的是旋转的性质、等边三角形的性质与判定,全等三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学必修一全套教育课件
- 外贸合同cif完整版3篇
- 2024年度版权转让合同的转让范围与权益变更3篇
- 心脏瓣膜病的日常护理
- 河南师范大学《中国近现代史纲要》2021-2022学年第一学期期末试卷
- 糖尿病自身抗体谱
- 物联网智慧医疗方案
- 招聘话术培训
- 甲亢的护理小讲课
- 开饭店合伙人协议书
- 上海市虹口中学2025届高三压轴卷数学试卷含解析
- 九年级全套课件教学课件教学课件教学
- 长春工程学院《西方文明史》2023-2024学年第一学期期末试卷
- 北京市五十六中学2024-2025学年七年级上学期期中数学试题
- 8.1 国家好 大家才会好(教学课件)-八年级道德与法治上册同步备课系列(统编版)
- 管理学基础知识考试题库(附含答案)
- 2024年辅警招考时事政治考题及答案(168题)
- 2024年“国际档案日”档案知识竞赛题目和答案
- 2024年广西普法云平台考试答案
- 2023-2024学年广东省深圳市福田区八年级(上)期末英语试卷
- 河南省安阳市林州市湘豫名校联考2024-2025学年高三上学期11月一轮诊断考试 英语 含解析
评论
0/150
提交评论