2024年江西抚州市临川区数学八年级下册期末监测模拟试题含解析_第1页
2024年江西抚州市临川区数学八年级下册期末监测模拟试题含解析_第2页
2024年江西抚州市临川区数学八年级下册期末监测模拟试题含解析_第3页
2024年江西抚州市临川区数学八年级下册期末监测模拟试题含解析_第4页
2024年江西抚州市临川区数学八年级下册期末监测模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年江西抚州市临川区数学八年级下册期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF垂直平分AB,垂足为点E,连接BF,CE,且BC=2,下面四个结论:①BF=;②∠CBF=45°;③△BEC的面积=△FBC的面积;④△ECD的面积为,其中正确的结论有()A.1个 B.2个 C.3个 D.4个2.化简(﹣)2的结果是()A.±3 B.﹣3 C.3 D.93.下列多项式中,能用完全平方公式分解因式的是()A.x2﹣x+1 B.1﹣2xy+x2y2 C.m2﹣2m﹣1 D.4.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x5.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形6.若分式在实数范围内有意义,则实数的取值范围是()A. B. C. D.7.如图,正方形的边长为2,点为的中点,连接,将沿折叠,点的对应点为.连接CF,则的长为()A. B. C. D.8.正五边形的每个内角度数是(

)A.60°

B.90°

C.108°D.120°9.方程x(x﹣1)=x的解是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=210.计算的结果是()A.4 B.± C.2 D.二、填空题(每小题3分,共24分)11.若b为常数,且﹣bx+1是完全平方式,那么b=_____.12.如图,△ABC中,已知M、N分别为AB、BC的中点,且MN=3,则AC的长为_____.13.某地区为了增强市民的法治观念,随机抽取了一部分市民进行一次知识竞赛,将竞赛成绩(得分取整数)整理后分成五组并绘制成如图所示的频数直方图.请结合图中信息,解答下列问题:抽取了多少人参加竞赛?这一分数段的频数、频率分别是多少?这次竞赛成绩的中位数落在哪个分数段内?14.若代数式有意义,则x的取值范围是______。15.若是完全平方式,则的值是__________.16.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有_____(只填序号).17.如图,ΔABC中,E为BC的中点,AD平分∠BAC,BD⊥AD,若AB=10,AC=16,则DE=______.18.分式,,的最简公分母__________.三、解答题(共66分)19.(10分)如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.(1)求线段AB的长度(2)求直线BC的解析式;(3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.20.(6分)求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:根据题意先画出图形,并写出已知、求证,再证明).21.(6分)(课题研究)旋转图形中对应线段所在直线的夹角(小于等于的角)与旋转角的关系.(问题初探)线段绕点顺时针旋转得线段,其中点与点对应,点与点对应,旋转角的度数为,且.(1)如图(1)当时,线段、所在直线夹角为______.(2)如图(2)当时,线段、所在直线夹角为_____.(3)如图(3),当时,直线与直线夹角与旋转角存在着怎样的数量关系?请说明理由;(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.(运用拓广)运用所形成的结论求解下面的问题:(4)如图(4),四边形中,,,,,,试求的长度.22.(8分)如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.23.(8分)数学活动课上,老师提出问题:如图,有一张长4dm,宽1dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm1,根据长方体的体积公式得到y和x的关系式:;(2)确定自变量x的取值范围是;(1)列出y与x的几组对应值.x/dm……y/dm1…1.12.22.7m1.02.82.5n1.50.9…(4)在下面的平面直角坐标系中,描出补全后的表中各对对应值为坐标的点,并画出该函数的图象如下图;结合画出的函数图象,解决问题:当小正方形的边长约为dm时,(保留1位小数),盒子的体积最大,最大值约为dm1.(保留1位小数)24.(8分)如图,,是四边形的对角线上两点,,,.求证:四边形是平行四边形.25.(10分)如图,已知:在平行四边形ABCD中,AB=2,AD=4,∠ABC=60°,E为AD上一点,连接CE,AF∥CE且交BC于点F.(1)求证:四边形AECF为平行四边形.(2)证明:△AFB≌△CED.(3)DE等于多少时,四边形AECF为菱形.(4)DE等于多少时,四边形AECF为矩形.26.(10分)如图,点为平面直角坐标系的原点,点在轴的正半轴上,正方形的边长是3,点在上,且.将绕着点逆时针旋转得到.(1)求证:;(2)在轴上找一点,使得的值最小,求出点的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据旋转的性质得到△BCF为等腰直角三角形,故可判断①②,根据三角形的面积公式即可判断③,根据直线DF垂直平分AB可得EH是△ABC的中位线,各科求出EH的长,再根据三角形的面积公式求出△ECD的面积即可判断④.【详解】∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,∴CB=FC,∠BCF=90°,∴△BCF为等腰直角三角形,故∠CBF=45°,②正确;∵BC=2,∴FC=2,∴BF==,①正确;过点E作EH⊥BD,∵△BEC和△FBC的底都为BC,高分别为EH和FC,且EH≠FC,∴△BEC的面积≠△FBC的面积,③错误;∵直线DF垂直平分AB,∴AF=BF=,∴CD=AC=2+∵直线DF垂直平分AB,则E为AB中点,又AC⊥BC,EH⊥BC,∴EH是△ABC的中位线,∴EH=AC=1+,△ECD的面积为×CD×EH=,故④正确,故选C.【点睛】此题主要考查旋转的性质,解题的关键是熟知全等三角形的性质、垂直平分线的性质、三角形中位线的判定与性质.2、C【解析】

根据二次根式的性质即可求出答案.【详解】原式=3,故选:C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.3、B【解析】

利用完全平方公式的结构特征判断即可.【详解】解:选项中的4个多项式中,能用完全平方公式分解因式的是1-2xy+x2y2=(1-xy)2,

故选B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.4、A【解析】

本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】解:正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.5、C【解析】

一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.6、D【解析】

根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:,,故选:.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.7、D【解析】

连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH=,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.【详解】解:如图,连接AF交BE于点O,过点F作MN⊥AB,∵AB∥CD,MN⊥AB,∴MN⊥CD,∵AB=2=AD,点E是AD中点,∴AE=1,∴EB=,∵S△ABE=×AB×AE=×BE×AO,∴2×1=AO,∴AO=,∵将△ABE沿BE折叠,点A的对应点为F,∴AO=OH=,AB=BF=2,∴AF=,∵AF2-AN2=FN2,BF2-BN2=FN2,∴AF2-AN2=BF2-BN2,∴-(2-BN)2=4-BN2,∴BN=,∴FN=,∵MN⊥AB,MN⊥CD,∠DCB=90°,∴四边形MNBC是矩形,∴BN=MC=,BC=MN=2,∴MF=,∴CF=.故选:D.【点睛】本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.8、C【解析】

先根据多边形的内角和公式(n-2)•180°求出内角和,然后除以5即可;【详解】根据多边形内角和定理可得:(5-2)•180°=540°,

540°÷5=108°;故选:C.【点睛】考查了正多边形的内角与外角的关系,解题关键熟记、运用求多边形内角和公式(n-2)•180°.9、D【解析】

移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x(x−1)=x,x(x−1)−x=0,x(x−1−1)=0,x=0,x−1−1=0,x1=0,x1=1.故选:D.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.10、C【解析】

根据二次根式的运算法则即可求出答案.【详解】解:原式==2,故选:C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.二、填空题(每小题3分,共24分)11、±1【解析】

根据完全平方式的一般式,计算一次项系数即可.【详解】解:∵b为常数,且x2﹣bx+1是完全平方式,∴b=±1,故答案为±1.【点睛】本题主要考查完全平方公式的系数关系,关键在于一次项系数的计算.12、6【解析】

由题意可知,MN是三角形ABC的中位线,然后依据三角形的中位线定理求解即可。【详解】解:∵M、N分别为AB、BC的中点,∴MN是△ABC的中位线,∴.AC=2MN=2×3=6.故答案为:6.【点睛】本题主要考查的是三角形的中位线定理,熟练掌握三角形的中位线定理是解题的关键.13、(1)抽取了人参加比赛;(2)频数为,频数为0.25;(3)【解析】

(1)将每组的人数相加即可;(2)看频数直方图可知这一分数段的频数为12,用频数÷总人数即可得到频率;(3)直接通过频数直方图即可得解.【详解】解:(人),答:抽取了人参加比赛;频数为,频数为;这次竞赛成绩的中位数落在这个分数段内.【点睛】本题主要考查频数直方图,中位数等,解此题的关键在于熟练掌握其知识点,通过直方图得到有用的信息.14、x>5【解析】

若代数式有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.【详解】若代数式有意义,则≠0,得出x≠5.根据根式的性质知中被开方数x-5≥0则x≥5,由于x≠5,则可得出x>5,答案为x>5.【点睛】本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.15、【解析】

根据完全平方公式即可求解.【详解】∵是完全平方式,故k=【点睛】此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.16、①②④⑤【解析】

①②∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF•AD≠1,所以选项③不正确;④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤在Rt△FEC中,EG⊥FC,∴=FG•CG,cos∠FCE=,∴CG===1,∴DG=CG,∴=FG•DG,故选项⑤正确;本题正确的结论有4个,故答案为①②④⑤.17、3【解析】

延长BD交AC于H,证明△ADB≌△ADH,根据全等三角形的性质得到AH=AB=10,BD=DH,根据三角形的中位线定理即可求解.【详解】延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴∠BAD=∠HAD,∠ADB=∠ADH=90°,又AD=AD,∴△ADB≌△ADH,∴AH=AB=10,D为BH中点,∴CH=AC-AH=6,∵E为BC中点,故DE是△BCH的中位线,∴DE=12CH=3故填:3.【点睛】此题主要考查三角形中位线的判定与性质,解题的关键是根据题意作出辅助线证明三角形全等进行求解.18、【解析】

确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】分式,,的分母分别是x、3xy、6(x-y),故最简公分母是,故答案为.【点睛】此题考查最简公分母,难度不大三、解答题(共66分)19、(1);(2);(3)P点的坐标是.【解析】

(1)先确定出点A,B坐标,利用勾股定理计算即可;(2)如图1中,作CE⊥x轴于E,作CF⊥y轴于F,进而判断出,即可判断出四边形OECF是正方形,求出点C坐标即可解决问题.(3)如图2中,先判断出点B是AM的中点,进而求出M的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.【详解】解:(1)∵直线交坐标轴于A、B两点.∴令,,∴B点的坐标是,,令,,∴A点的坐标是,,根据勾股定理得:.(2)如图,作CE⊥x轴于E,作CF⊥y轴于F,∴四边形OECF是矩形.∵是等腰直角三角形,,,,,,,.∴四边形OECF是正方形,,,,.∴C点坐标设直线BC的解析式为:,∴将、代入得:,解得:,.∴直线BC的解析式为:.(3)延长AB交DP于M,由旋转知,BD=AB,∴∠BAD=∠BDA,∵AD⊥DP,∴∠ADP=90°,∴∠BDA+∠BDM=90°,∠BAD+∠AMD=90°,∴∠AMD=∠BDM,∴BD=BM,∴BM=AB,∴点B是AM的中点,∵A(4,0),B(0,2),∴M(−4,4),∴直线DP的解析式为y=−x,∵直线DO交直线y=x+3于P点,将直线与联立得:解得:∴P点的坐标是.【点睛】此题是一次函数综合题,主要考查了待定系数法求函数解析式,一次函数的图像和性质,全等三角形的判定和性质,等腰三角形的判定和性质等,解(2)的关键是求出点C的坐标,解(3)的关键是证明点B是AM的中点,求出直线DP的解析式.20、见解析【解析】

分别作出AB、AC的垂直平分线,得到点M,N,根据全等三角形的性质、平行四边形的判定和性质证明结论.【详解】如图,点M,N即为所求作的点,已知:如图,△ABC中,点M,N分别是AB,AC的中点,连接MN,求证:MN∥BC,MN=BC证明:延长MN至点D,使得MN=ND,连接CD,在△AMN和△CDN中,,∴△AMN≌△CDN(SAS)∴∠AMN=∠D,AM=CD,∴AM∥CD,即BM∥CD,∵AM=BM=CD,∴四边形BMDC为平行四边形,∴MN∥BC,MD=BC,∵MN=MD,∴MN=BC.【点睛】本题考查的是三角形中位线定理、平行四边形的判定定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.21、(1)90°;(2)60°;(3)互补,理由见解析;相等或互补;(4).【解析】

(1)通过作辅助线如图1,延长DC交AB于F,交BO于E,可以通过旋转性质得到AB=CD,OA=OC,BO=DO,证明△AOB≌△COD,进而求得∠B=∠D得∠BFE=∠EOD=90°(2)通过作辅助线如图2,延长DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°(3)通过作辅助线如图3,直线与直线所夹的锐角与旋转角互补,延长,交于点通过证明得,再通过平角的定义和四边形内角和定理,证得;形成结论:通过问题(1)(2)(3)可以总结出旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)通过作辅助线如图:将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,可得,进一步得到△BDF是等边三角形,,再利用勾股定理求得.【详解】(1)解:(1)如图1,延长DC交AB于F,交BO于E,

∵α=90°

∴∠BOD=90°

∵线段AB绕点O顺时针旋转得线段CD,

∴AB=CD,OA=OC,BO=DO

∴△AOB≌△COD(SSS)

∴∠B=∠D

∵∠B=∠D,∠OED=∠BEF

∴∠BFE=∠EOD=90°

故答案为:90°

(2)如图2,延长DC交AB于F,交BO于E,

∵α=60°

∴∠BOD=60°

∵线段AB绕点O顺时针旋转得线段CD,

∴AB=CD,OA=OC,BO=DO

∴△AOB≌△COD(SSS)

∴∠B=∠D

∵∠B=∠D,∠OED=∠BEF

∴∠BFE=∠EOD=60°

故答案为:60°(3)直线与直线所夹的锐角与旋转角互补,延长,交于点∵线段绕点顺时针旋转得线段,∴,,∴∴∴∵∴∴∴直线与直线所夹的锐角与旋转角互补;形成结论:旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,∴旋转角为,∴,,,∴△BDF是等边三角形,∵,,∴,∴.【点睛】本题是三角形综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.22、(1)见解析(2)DE⊥AF【解析】试题分析:(1)根据平行四边形的性质可得到AB∥CD,从而可得到AB∥DF,根据平行线的性质可得到两组角相等,已知点E是BC的中点,从而可根据AAS来判定△BAE≌△CFE,根据全等三角形的对应边相等可证得AB=CF,进而得出CF=CD;(2)利用全等三角形的判定与性质得出AE=EF,再利用角平分线的性质以及等角对等边求出DA=DF,利用等腰三角形的性质求出即可.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵点F为DC的延长线上的一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC中点,∴BE=CE,则在△BAE和△CFE中,,∴△BAE≌△CFE(AAS),∴AB=CF,∴CF=CD;(2)解:DE⊥AF,理由:∵AF平分∠BAD,∴∠BAF=∠DAF,∵∠BAF=∠F,∴∠DAF=∠F,∴DA=DF,又由(1)知△BAE≌△CFE,∴AE=EF,∴DE⊥AF.【点评】此题主要考查学生对平行四边形的性质以及全等三角形的判定与性质,证明线段相等的常用方法是证明三角形全等.23、(1)(或);(2);(1)m=1,n=2;(4)~都行,1~1.1都行.【解析】

根据题意,列出y与x的函数关系式,根据盒子长宽高值为正数,求出自变量取值范围;利用图象求出盒子最大体积.【详解】(1)y=x(4−2x)(1−2x)=4x−14x+12x故答案为:y=4x−14x+12x(2)由已知解得:0<x<(1)根据函数关系式,当x=时,y=1;当x=1时,y=2(4)根据图象,当x=0.55dm时,盒子的体积最大,最大值约为1.01dm1故答案为:~都行,1~1.1都行【点睛】此题考查函数的表示方法,函数自变量的取值范围,函数图像,解题关键在于看懂图中数据.24、见解析【解析】

由平行线的性质得出∠AEB=∠CFD,求出BE=DF,由SAS即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论