2024届广东省广州市荔湾区数学八年级下册期末调研模拟试题含解析_第1页
2024届广东省广州市荔湾区数学八年级下册期末调研模拟试题含解析_第2页
2024届广东省广州市荔湾区数学八年级下册期末调研模拟试题含解析_第3页
2024届广东省广州市荔湾区数学八年级下册期末调研模拟试题含解析_第4页
2024届广东省广州市荔湾区数学八年级下册期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省广州市荔湾区数学八年级下册期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.菱形的对角线长分别为6和8,则该菱形的面积是()A.24 B.48 C.12 D.102.如图,梯形ABCD中,AD∥BC,AD=CD,BC=AC,∠BAD=108°,则∠D=()A.144° B.110° C.100° D.108°3.已知下面四个方程:+3x=9;+1=1;=1;=1.其中,无理方程的个数是()A.1 B.2 C.3 D.44.窗棂即窗格(窗里面的横的或竖的格)是中国传统木构建筑的框架结构设计.下列表示我国古代窗棂样式结构图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.5.在平行四边形中,于点,于点,若,,平行四边形的周长为,则()A. B. C. D.6.下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm27.一次函数不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个实数根,则k的取值范围是()A.k≤且k≠1 B.k≤ C.k<且k≠1 D.k<9.若把点A(-5m,2m-1)向上平移3个单位后得到的点在x轴上,则点A在()A.x轴上 B.第三象限 C.y轴上 D.第四象限10.函数y=xx+3的自变量取值范围是(A.x≠0 B.x>﹣3 C.x≥﹣3且x≠0 D.x>﹣3且x≠0二、填空题(每小题3分,共24分)11.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.12.过边形的一个顶点共有2条对角线,则该边形的内角和是__度.13.直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是_______.14.已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为________.15.如图,在平行四边形中,连接,且,过点作于点,过点作于点,在的延长线上取一点,,若,则的度数为____________.16.已知a=﹣,b=+,求a2+b2的值为_____.17.如图,折叠矩形纸片的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,则EC的长为_________.18.在平面直角坐标系xOy中,已知点A1,1,B-1,1,如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C三、解答题(共66分)19.(10分)如图,在中,,请用尺规过点作直线,使其将分割成两个等腰三角形.(保留作图痕迹,不写作法.并把作图痕迹用黑色签字笔加黑).20.(6分)解不等式组.21.(6分)先化简,再求值:,其中与2,3构成的三边,且为整数.22.(8分)解方程:(1)(2)23.(8分)如图,平行四边形中,在边上,,为平行四边形外一点,连接、,连接交于,且.(1)若,,求平行四边形的面积;(2)求证:.24.(8分)如图,已知一次函数的图象经过A(0,-3)、B(4,0)两点.(1)求这个一次函数的解析式;(2)若过O作OM⊥AB于M,求OM的长.25.(10分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.26.(10分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;

参考答案一、选择题(每小题3分,共30分)1、A【解析】

由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.【详解】解:∵菱形的两条对角线的长分别是6和8,

∴这个菱形的面积是:×6×8=1.

故选:A.【点睛】此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.2、D【解析】

根据两直线平行,同旁内角互补求出∠B,再根据等腰三角形两底角相等求出∠ACB,然后根据两直线平行,内错角相等可得∠DAC=∠ACB,再根据等腰三角形两底角相等列式计算即可得解.【详解】∵AD∥BC,∴∠B=180°﹣∠BAD=180°﹣108°=72°,∵BC=AC,∴∠BAC=∠B=72°,∴∠ACB=180°﹣2×72°=36°,∵AD∥BC,∴∠DAC=∠ACB=36°,∵AD=CD,∴∠DCA=∠DAC=36°,∴∠D=180°﹣36°×2=108°,故选D.【点睛】本题考查了等腰三角形的性质,平行线的性质,熟练掌握相关知识是解题的关键.3、A【解析】

无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义即可判断.【详解】无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义只有第一个方程为无理方程.即+3x=9,1个,故选:A.【点睛】本题直接考查了无理方程的概念--根号下含有未知数的方程即为无理方程.准确掌握此概念即可解题..4、A【解析】

将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】A、是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,是中心对称图形;D、不是轴对称图形,不是中心对称图形,故选:A.【点睛】此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.5、D【解析】

已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【详解】解:设BC=xcm,则CD=(20−x)cm,根据“等面积法”得,4x=6(20−x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48;故选D.【点睛】本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.6、D【解析】

根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.【详解】根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F的面积之和为3个G的面积.∵M的面积是61=36cm1,∴A、B、C、D、E、F的面积之和为36×3=108cm1.故选D.【点睛】考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.7、A【解析】

由于k=-1<0,b=-1,由此可以确定函数的图象经过的象限.【详解】∵y=-x-1,∴k=-1<0,b=-1<0,∴它的图象经过的象限是第二、三、四象限,不经过第一象限.故选A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.8、A【解析】

根据一元二次方程的定义和根的判别式的意义可得,然后求出两个不等式的公共部分即可.【详解】解:根据题意得解得所以k的范围为故选A.【点睛】本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;,方程没有实数根,熟知这些是解题关键.9、D【解析】

让点A的纵坐标加3后等于0,即可求得m的值,进而求得点A的横纵坐标,即可判断点A所在象限.【详解】∵把点A(﹣5m,2m﹣1)向上平移3个单位后得到的点在x轴上,∴2m﹣1+3=0,解得:m=﹣1,∴点A坐标为(5,﹣3),点A在第四象限.故选D.【点睛】本题考查了点的平移、坐标轴上的点的坐标的特征、各个象限的点的坐标的符号特点等知识点,是一道小综合题.用到的知识点为:x轴上的点的纵坐标为0;上下平移只改变点的纵坐标.10、B【解析】

由题意得:x+1>0,解得:x>-1.故选B.二、填空题(每小题3分,共24分)11、m>1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.考点:一次函数图象与几何变换.12、1【解析】

n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出(n-3)条;多边形内角和定理:(n-2)•180(n≥3)且n为整数).【详解】解:过n边形的一个顶点共有2条对角线,则n=2+3=5,该n边形的内角和是(5-2)×180°=1°,故答案为:1.【点睛】本题考查了多边形内角和,熟记多边形内角和定理:(n-2)•180(n≥3)且n为整数)是解题的关键.13、(0,-3).【解析】

直线y=3x+2沿y轴向下平移5个单位后对应的解析式为y=3x+2-5,即y=3x-3,当x=0时,y=-3,即与y轴交点坐标为(0,-3).14、或【解析】

利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cmEF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.15、25【解析】

根据平行四边形的性质得到BD=BA,根据全等三角形的性质得到AM=DN,推出△AMP是等腰直角三角形,得到∠MAP=∠APM=45°,根据三角形的外角的性质可得出答案.【详解】解:在平行四边形ABCD中,

∵AB=CD,

∵BD=CD,

∴BD=BA,

又∵AM⊥BD,DN⊥AB,

∴∠AMB=∠DNB=90°,

在△ABM与△DBN中,

∴△ABM≌△DBN(AAS),

∴AM=DN,

∵PM=DN,

∴AM=PM,

∴△AMP是等腰直角三角形,

∴∠MAP=∠APM=45°,

∵AB∥CD,

∴∠ABD=∠CDB=70°,

∴∠PAB=∠ABD-∠P=25°,

故答案为:25.【点睛】本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,熟练掌握性质和判定是解题的关键.16、1【解析】

把已知条件代入求值.【详解】解:原式==.故答案是:1.【点睛】直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.17、3cm【解析】【分析】由矩形的性质可得CD=AB=8,AD=BC=10,由折叠的性质可得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,由勾股定理可求出BF的长,继而可得FC的长,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,利用勾股定理即可救出CE的长.【详解】∵四边形ABCD为矩形,∴CD=AB=8,AD=BC=10,∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,∴AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,BF==6,∴FC=BC-BF=4,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8-x)2,解得x=3,即CE=3cm,故答案为:3cm.【点睛】本题考查了矩形的性质、折叠的性质、勾股定理等,熟练掌握相关的性质及定理是解题的关键.18、-2,0【解析】

需要分类讨论:以AB为该平行四边形的边和对角线两种情况.【详解】解:如图,①当AB为该平行四边形的边时,AB=OC,∵点A(1,1),B(-1,1),O(0,0)∴点C坐标(-2,0)或(2,0)②当AB为该平行四边形的对角线时,C(0,2).故答案是:(-2,0)或(2,0)或(0,2).【点睛】本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.三、解答题(共66分)19、见解析【解析】

作斜边AB的中垂线可以求得中点D,连接CD,根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=DB.【详解】解如图所示:,△ACD和△CDB即为所求.【点睛】此题主要考查了应用设计与作图,关键在于用中垂线求得中点和运用直角三角形中,斜边上的中线等于斜边的一半,把Rt△ABC分割成两个等腰三角形.20、1≤x<.【解析】

分别求出各不等式的解集,再求出其公共解集即可.【详解】解不等式①,得:x≥1,解不等式②,得:x<,所以不等式组的解集为1≤x<.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.试题解析:原式=,∵a与2、3构成△ABC的三边,∴3−2<a<3+2,即1<a<5,又∵a为整数,∴a=2或3或4,∵当x=2或3时,原分式无意义,应舍去,∴当a=4时,原式==122、(1)原方程无解;(1)x=6或x=-1.【解析】【分析】(1)先去分母,化为整式方程,解整式方程后进行检验即可得答案;(1)利用因式分解法进行求解即可得.【详解】(1)两边同乘(x-1),得1=x-1-3(x-1),解得:x=1,检验:x=1时,x-1=0,x=1是原方程的增根,原方程无解;(1)因式分解,得(x-6)(x+1)=0,x-6=0或x+1=0,x=6或x=-1.【点睛】本题考查了解分式方程以及解一元二次方程,熟练掌握分式方程的解法、注意事项以及一元二次方程的解法是解题的关键.23、(1);(2)证明见解析.【解析】

(1)过点作于点,由求出DH的长,然后根据平行四边形的面积求法求解即可;(2)在上截取点,使,连接,首先证明和是等边三角形,即可得到,,,然后可证,根据全等三角形的性质易得结论.【详解】解:(1)过点作于点,∵,∴,∴,∵四边形是平行四边形,∴,∴,∴,(2)在上截取点,使,连接.∵∴是等边三角形,∴,,∵,,∴AE=AB,∵四边形是平行四边形,∴,∴是等边三角形,∴,,∵,∴,∴,∴,∴.【点睛】本题考查了平行四边形的性质、等边三角形的判定以及三角形全等的判定和性质,根据题意作出常用辅助线是解题关键.24、(1)y=x-3;(2)OM=.【解析】

(1)设一次函数的解析式为y=kx+b,用待定系数法求解即可;(2)先根据勾股定理求出AB的长,再用等面积法求解即可.【详解】(1)设一次函数的解析式为y=kx+b,把A(0,-3)、B(4,0)两点代入y=kx+b得:,解得,故一次函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论