




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省阳江市东平中学八年级数学第二学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为()A.6.5 B.5.5 C.8 D.132.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78 B.76 C.16 D.123.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为()A.13=3+10 B.25=9+16 C.49=18+31 D.64=28+364.已知,,是一次函数图象上不同的两个点,若,则的取值范围是()A. B. C. D.5.下列二次根式中是最简二次根式的是()A. B. C. D.6.计算的结果为()A.±3 B.-3 C.3 D.97.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B. C.4 D.48.如图,,点是垂直平分线的交点,则的度数是()A. B.C. D.9.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.10.已知,是一次函数的图象上的两个点,则,的大小关系是A. B. C. D.不能确定二、填空题(每小题3分,共24分)11.如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.12.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______13.在平面直角坐标系中,一次函数(、为常数,)的图象如图所示,根据图象中的信息可求得关于的方程的解为____.14.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.15.已知:一次函数的图像在直角坐标系中如图所示,则______0(填“>”,“<”或“=”)16.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=_____.17.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.18.如图,在△ABC中,AB=5,AC=6,BC=7,点D、E、F分别是边AB、AC、BC的中点,连接DE、DF、EF,则△DEF的周长是_____________。三、解答题(共66分)19.(10分)现有两家可以选择的快递公司的收费方式如下.甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.乙公司:按物品重量每千克7元计价,外加一份包装费10元.设物品的重量为x千克,甲、乙公司快递该物品的费用分别为,.(1)分别写出
和与x的函数表达式(并写出x的取值范围);(2)图中给出了与x的函数图象,请在图中画出(1)中与x的函数图象(要求列表,描点).x…__________…y…__________…20.(6分)已知a+b=5,ab=6,求多项式a3b+2a2b2+ab3的值.21.(6分)如图,在中,点是边上一个动点,过点作直线,设交的平分线于点,交的外角平分线于点.
(1)探究与的数量关系并加以证明;
(2)当点运动到上的什么位置时,四边形是矩形,请说明理由;
(3)在(2)的基础上,满足什么条件时,四边形是正方形?为什么?22.(8分)某文具店准备购进甲、乙两种文具袋,已知甲文具袋每个的进价比乙每个进价多2元,经了解,用120元购进的甲文具袋与用90元购进的乙文具袋的数量相等.(1)分别求甲、乙两种文具袋每个的进价是多少元?(2)若该文具店用1200元全部购进甲、乙两种文具袋,设购进甲x个,乙y个.①求y关于x的关系式.②甲每个的售价为10元,乙每个的售价为9元,且在进货时,甲的购进数量不少于60个,若这批文具袋全部售完可获利w元,求w关于x的关系式,并说明如何进货该文具店所获利润最大,最大利润是多少?23.(8分)(几何背景)如图1,AD为锐角△ABC的高,垂足为D.求证:AB2﹣AC2=BD2﹣CD2(知识迁移)如图2,矩形ABCD内任意一点P,连接PA、PB、PC、PD,请写出PA、PB、PC、PD之间的数量关系,并说明理由.(拓展应用)如图3,矩形ABCD内一点P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c满足a2﹣b2=c2,则的值为(请直接写出结果)24.(8分)师徒两人分别加工1200个零件,已知师傅每天加工零件的个数是徒弟每天加工零件个数的1.5倍,结果师傅比徒弟少用10天完成,求徒弟每天加工多少个零件?25.(10分)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图):在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现在计划在休息区内摆放占地面积为31.5平方米“背靠背”休闲椅(如图),并要求休闲椅摆放在东西方向上或南北方向上,请通过计算说明休息区内最多能摆放几张这样的休闲椅.26.(10分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.(1)试探究线段AG与CE的大小关系,并证明你的结论;(2)若AG恰平分∠BAC,且BE=1,试求AB的长;(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
过点D作DH⊥AC于H,利用角平分线的性质得到DF=DH,将三角形EDF的面积转化为三角形DGH的面积来求.【详解】如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,DE=DG∴Rt△DEF≌Rt△DGH(HL),
∴S△DEF=S△DGH,
∵△ADG和△AED的面积分别为51和38,
∴△EDF的面积=12×(51-38【点睛】本题考查的知识点是角平分线的性质及全等三角形的判定及性质,解题关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.2、A【解析】
根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得,解得x=千米/分钟,相遇后乙到达A站还需=2分钟,相遇后甲到达B站还需分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B,故选:A.【点睛】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.3、D【解析】
三角形数=1+2+3+……+n,很容易就可以知道一个数是不是三角形数.结合公式,代入验证三角形数就可以得到答案.【详解】A.中3和10是三角形数,但是不相邻;B.中16、9均是正方形数,不是三角形数;C.中18不是三角形数;D.中28=1+2+3+4+5+6+7,36=1+2+3+4+5+6+7+8,所以D正确;故选D.【点睛】此题考查此题考查规律型:数字的变化类,勾股数,解题关键在于找到变换规律.4、D【解析】
根据可得出与异号,进而得出,解之即可得出结论.【详解】,与异号,,解得:.故选:.【点睛】本题考查了一次函数的性质,熟练掌握“当时,随的增大而减小”是解题的关键.5、A【解析】
根据最简二次根式的定义判断即可.【详解】A.是最简二次公式,故本选项正确;B.=不是最简二次根式,故本选项错误;C.=不是最简二次根式,故本选项错误;D.=不是最简二次根式,故本选项错误.故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.6、C【解析】
根据=|a|进行计算即可.【详解】=|-3|=3,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.7、C【解析】
解:设,可求出,由于对角线垂直,计算对角线乘积的一半即可.【详解】设A(a,),可求出D(2a,),∵AB⊥CD,∴S四边形ACBD=AB∙CD=×2a×=4,故选:C.【点睛】本题主要考查了反比例函数系数k的几何意义以及线段垂直平分线的性质,解题的关键是设出点A和点B的坐标.8、B【解析】
利用线段垂直平分线的性质即可得出答案.【详解】解:连接OA,OB∵∠BAC=80°∴∠ABC+∠ACB=100°又∵O是AB和AC垂直平分线的交点∴OA=OB,OA=OC∴∠OBA=∠OAB,∠OCA=∠OAC,OB=OC∴∠OBA+∠OCA=80°∴∠OBA+∠OCB=100°-80°=20°又∵OB=OC∴∠BCO=∠CBO=10°故答案选择B.【点睛】本题主要考查了线段垂直平分线和等腰三角形的性质.9、B【解析】试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:小强小华石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:.故选B.考点:概率公式.10、C【解析】
根据,是一次函数的图象上的两个点,由,结合一次函数在定义域内是单调递减函数,判断出,的大小关系即可.【详解】,是一次函数的图象上的两个点,且,
.
故选:C.
【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数的性质.二、填空题(每小题3分,共24分)11、1【解析】
连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.【详解】如图,连接BE、DF交于点O.∵四边形ABCD是正方形,∴,.∵是等腰直角三角形,∴,,∴.在和△中,∵,,,∴,∴.∵,∴,∴,,,,∴.故答案为1.【点睛】本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.12、k<0【解析】
根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.【详解】解:∵一次函数y=kx+3的图象不经过第三象限,∴经过第一、二、四象限,∴k<0.故答案为:k<0.【点睛】本题考查了一次函数图象与系数的关系.13、x=-2【解析】
首先根据图像中的信息,可得该一次函数图像经过点(-2,3)和点(0,1),代入即可求得函数解析式,方程即可得解.【详解】解:由已知条件,可得图像经过点(-2,3)和点(0,1),代入,得解得即方程为解得【点睛】此题主要考查利用一次函数图像的信息求解析式,然后求解一元一次方程,熟练运用,即可解题.14、6<v<2或v=4.2【解析】
利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【详解】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,1)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=2x+1;将(0,1)、(70,420)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+1;将(0,1)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.2x+1.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<2或v=4.2.故答案为6<v<2或v=4.2【点睛】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.15、>【解析】
根据图像与y轴的交点可知b<0,根据y随x的增大而减小可知k<0,从而根据乘法法则可知kb>0.【详解】∵图像与y轴的交点在负半轴上,∴b<0,∵y随x的增大而减小,∴k<0,∴kb>0.故答案为>.【点睛】本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.16、-3【解析】点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则17、2【解析】
把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.【详解】∵2=1×2,∴F(2)=,故(1)是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).故答案为2.【点睛】本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).18、9【解析】
根据三角形中位线定理求出DE、DF、EF即可解决问题.【详解】解:∵点D、E、F分别是边AB、AC、BC的中点∴∴∴△DEF的周长是:【点睛】本题考查了三角形中位线,熟练掌握三角形中位线定理是解题的关键.三、解答题(共66分)19、(1),;(2)x…__1_____2____3___…y…___17____24____31___…图象见解析【解析】
(1)根据题目中甲乙公司不同的收费方式结合数量关系,找出和与x之间的关系;(2)根据的方程进行列表,依次描点连线即可得出函数图象.【详解】解:(1)设物品的重量为x千克由题意可得;;(2)列表为x…__1_____2____3___…y…___17____24____31___…函数图象如下:故本题最后答案为:(1),;(2)x…__1_____2____3___…y…___17____24____31___…图象如上所示.【点睛】(1)本题主要考查了一次函数的应用,解题的关键是根据不同的x的范围列出不同的解析式,其中不要忽略本题为实际问题,即x的取值范围为正;(2)本题主要考查了函数图象的画法,明确画函数图象的步骤是解题的关键.20、1【解析】
对所求的式子先提公因式,然后将a+b=5,ab=6代入即可解答本题.【详解】∵a+b=5,ab=6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=6×52=6×25=1.【点睛】本题考查因式分解的应用,解答本题的关键是对所求式子变形,找出与已知式子之间的关系.21、(1)OE=OF,理由见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由见解析;【解析】
(1)由平行线的性质和角平分线定义得出∠OEC=∠OCE,∠OFC=∠OCF,根据“等角对等边”得出OE=OC,OF=OC,即可得出结论;
(2)由(1)得出的OE=OC=OF,点O运动到AC的中点时,则由OE=OC=OF=OA,证出四边形AECF是平行四边形,再证出∠ECF=90°即可;
(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形AECF是矩形且对角线垂直,得出四边形AECF是正方形.【详解】(1)OE=OF,理由如下:
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠DCF,
∵CE平分∠BCA,CF平分∠ACD,
∴∠OCE=∠BCE,∠OCF=∠DCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴OE=OC,OF=OC,
∴OE=OF;
(2)解:当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又EO=FO,
∴四边形AECF为平行四边形,
又CE为∠ACB的平分线,CF为∠ACD的平分线,
∴∠BCE=∠ACE,∠ACF=∠DCF,
∴∠BCE+∠ACE+∠ACF+∠DCF=2(∠ACE+∠ACF)=180°,
即∠ECF=90°,
∴四边形AECF是矩形;
(3)解:当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由如下:
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
∵MN∥BC,
当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.【点睛】此题考查四边形综合题目,正方形和矩形的判定、平行四边形的判定、等腰三角形的判定、平行线的性质以及角平分线的定义,解题关键在于掌握各判定定理.22、(1)乙文件袋每个进价为6元,则甲文件袋每个为8元;(2)①;②w=﹣2x+600,甲文具袋进60个,乙文件袋进120个,获得利润最大为480元.【解析】
(1)关键语是“用120元购进的甲文具袋与用90元购进的乙文具袋的数量相等”可根据此列出方程.(2)①根据题意再由(1)可列出方程②根据甲每个的售价为10元,乙每个的售价为9元,且在进货时,甲的购进数量不少于60个,若这批文具袋全部售完可获利w元,可列出方程,求出解析式再根据函数图象,分析x的取值即可解答【详解】解:(1)设乙文件袋每个进价为x元,则甲文件袋每个为(x+2)元,根据题意得:解得x=6经检验,x=6是原分式方程的解∴x+2=8答:乙文件袋每个进价为6元,则甲文件袋每个为8元(2)①根据题意得:8x+6y=1200y=200﹣②w=(10﹣8)x+(9﹣6)y=2x+3(200﹣)=﹣2x+600∵k=﹣2<0∴w随x的增大而减小∵x≥60,且为整数∴当x=60时,w有最大值为,w=60×(﹣2)+600=480此时,y=200﹣×60=120答:甲文具袋进60个,乙文件袋进120个,获得利润最大为480元.【点睛】此题考查二元一次方程的应用和分式方程的应用,解题关键在于列出方程23、【几何背景】:详见解析;【知识迁移】:详见解析;【拓展应用】:【解析】
几何背景:由Rt△ABD中,AD1=AB1﹣BD1,Rt△ACD中,AD1=AC1﹣CD1,则结论可证.知识迁移:过P点作PE⊥AD,延长EP交BC于F,可证四边形ABFE,四边形DCFE是矩形.根据上面的结论求得PA、PB、PC、PD之间的数量关系.拓展应用:根据勾股定理可列方程组,可求PD=c,PC=c即可得.【详解】解:几何背景:在Rt△ABD中,AD1=AB1﹣BD1Rt△ACD中,AD1=AC1﹣CD1,∴AB1﹣BD1=AC1﹣CD1,∴AB1﹣AC1=BD1﹣CD1.知识迁移:BP1﹣PC1=BF1﹣CF1.如图:过P点作PE⊥AD,延长EP交BC于F∴四边形ABCD是矩形∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°又∵PE⊥AD∴PF⊥BC∵PE是△APD的高∴PA1﹣PD1=AE1﹣DE1.∵PF是△PBC的高∴BP1﹣PC1=BF1﹣CF1.∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC∴四边形ABFE,四边形DCFE是矩形∴AE=BF,CF=DE∴PA1﹣PD1=BP1﹣PC1.拓展应用:∵PA1﹣PD1=BP1﹣PC1.∴PA1﹣PB1=c1.∴PD1﹣PC1=c1.且PD1+PC1=c1.∴PD=c,PC=c∴,故答案为.【点睛】本题考查了四边形的综合题,矩形的性质,勾股定理,关键是利用勾股定理列方程组.24、徒弟每天加工40个零件.【解析】
设徒弟每天加工x个零件,根据工作时间=工作总量÷工作效率,结合师傅比徒弟少用10天完成,即可得出关于x的分式方程.【详解】解:设徒弟每天加工个零件,则师傅每天加工个零件.由题意得:,解得,经检验:是原方程的解.答:徒弟每天加工40个零件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 写室内装修合同标准文本
- 亲戚卖车合同标准文本
- 有效提升服务质量的计划
- 会议服务度合同标准文本
- 传媒公司活动合同标准文本
- 桂林市防溺水课件大赛
- 2025新版金融贷款合同
- 2025企业借款合同
- 企业征地合同标准文本
- 及时反馈机制的有效设计计划
- 广东省深圳市宝安区2022-2023学年八年级下学期期中语文试题
- 2024年房屋租赁合同电子版pdf
- 【高尔夫挥杆技术训练探究8700字(论文)】
- 国际航空货运代理实务
- 《咯血的诊治》课件2
- 江苏省连云港市赣榆智贤高中20222023学年高一下学期3月阶段检测语文试题(解析)
- 火力发电厂消防知识培训课件
- MSOP(测量标准作业规范)测量SOP
- 仓库温湿度记录表
- 营养风险筛查(NRS2002)解读
- 复地A2A3附着式升降脚手架施工方案济南复星国际中心A2A3地块总承包工程
评论
0/150
提交评论