安徽省宿州埇桥区七校联考2024届数学八年级下册期末教学质量检测模拟试题含解析_第1页
安徽省宿州埇桥区七校联考2024届数学八年级下册期末教学质量检测模拟试题含解析_第2页
安徽省宿州埇桥区七校联考2024届数学八年级下册期末教学质量检测模拟试题含解析_第3页
安徽省宿州埇桥区七校联考2024届数学八年级下册期末教学质量检测模拟试题含解析_第4页
安徽省宿州埇桥区七校联考2024届数学八年级下册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州埇桥区七校联考2024届数学八年级下册期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.宇宙船使用的陀螺仪直径要求误差不能超过0.00000012米.用科学记数法表示为()A.1.2×10﹣7米 B.1.2×107米 C.1.2×10﹣6米 D.1.2×106米2.下列说法,你认为正确的是()A.0的倒数是0 B.3-1=-3 C.是有理数 D.33.如图,已知正方形ABCD边长为1,,,则有下列结论:①;②点C到EF的距离是2-1;③的周长为2;④,其中正确的结论有()A.4个 B.3个 C.2个 D.1个4.为加快5G网络建设,某移动通信公司在山顶上建了一座5G信号通信塔AB,山高BE=100米(A,B,E在同一直线上),点C与点D分别在E的两侧(C,E,D在同一直线上),BE⊥CD,CD之间的距离1000米,点D处测得通信塔顶A的仰角是30°,点C处测得通信塔顶A的仰角是45°(如图),则通信塔AB的高度约为()米.(参考数据:,)A.350 B.250 C.200 D.1505.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.46.如图,在四边形中,与相交于点,,那么下列条件中不能判定四边形是菱形的为()A.∠OAB=∠OBA B.∠OBA=∠OBC C.AD∥BC D.AD=BC7.某市要组织一次足球邀请赛,参赛的每两个队都要比赛一场,赛程计划安排3天,每天安排2场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.12xx+1=6 B.18.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A.6 B.6 C.3 D.3+39.点E是正方形ABCD对角线AC上,且EC=2AE,Rt△FEG的两条直角边EF、EG分别交BC、DC于M、N两点,若正方形ABCD的边长为a,则四边形EMCN的面积()A.a2 B.a2 C.a2 D.a210.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.289(1―2x)=256B.256(1+x)2=289C.289(1―x)2=256D.289―289(1―x)―289(1―x)2=25611.若=,则x的取值范围是()A.x<3 B.x≤3 C.0≤x<3 D.x≥012.下列方程中有一根为3的是()A.x2=3 B.x2﹣4x﹣3=0C.x2﹣4x=﹣3 D.x(x﹣1)=x﹣3二、填空题(每题4分,共24分)13.如图,在中,,,,点为的中点,在边上取点,使.绕点旋转,得到(点、分别与点、对应),当时,则___________.14.直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.15.在一个不透明的盒子中装有n个小球,它们除颜色不同外,其余都相同,其中有4个是白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,大量重复上述实验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是___.16.若分式方程有增根,则等于__________.17.用一块长80cm,宽60cm的纸板,在四个角截去四个相同的小正方形,然后做成一个底面积为1500cm2的无盖长方体纸盒,则截去的小正方形的边长为___________.18.实数a,b在数轴上对应点的位置如图所示,化简|b|+=______.三、解答题(共78分)19.(8分)如图,四边形和都是平行四边形.求证:四边形是平行四边形.20.(8分)某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为100元/米1,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过10米1,每平方米都按九折计费,超过10米1,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x米1.(1)请分别写出甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;(1)请你结合函数图象的知识帮助学校在甲、乙两厂家中,选择一家收取总费用较少的.21.(8分)先化简,再求值:;其中a=.22.(10分)如图正比例函数y=2x的图像与一次函数的图像交于点A(m,2),一次函数的图象经过点B(-2,-1)与y轴交点为C与x轴交点为D.(1)求一次函数的解析式;(2)求的面积.23.(10分)两个含有二次根式的代数式相乘,积不含有二次根式,称这两个代数式互为有理化因式,例如:与、与等都是互为有理化因式,在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;;…….请仿照上述过程,化去下列各式分母中的根号.(1)(2)(n为正整数).24.(10分)如图,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动.(1)如果点,分别从点,同时出发,那么几秒后,的面积等于6?(2)如果点,分别从点,同时出发,那么几秒后,的长度等于7?

25.(12分)计算:(1);(2).26.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;结论2:B′D∥AC…(应用与探究)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)

参考答案一、选择题(每题4分,共48分)1、A【解析】

科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【详解】解:0.00000012米=1.2×10﹣7米,故答案为A。【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.2、D【解析】

根据1没有倒数对A进行判断;根据负整数指数幂的意义对B进行判断;根据实数的分类对C进行判断;根据算术平方根的定义对D进行判断.【详解】A.1没有倒数,所以A选项错误;B.3﹣1,所以B选项错误;C.π是无理数,所以C选项错误;D.3,所以D选项正确.故选D.【点睛】本题考查了算术平方根:一个正数的正的平方根叫这个数的算术平方根,1的算术平方根为1.也考查了倒数、实数以及负整数指数幂.3、C【解析】

先证明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可对①进行判断;连接EF、AC,它们相交于点H,如图,利用Rt△ABE≌Rt△ADF得到BE=DF,则CE=CF,接着判断AC垂直平分EF,AH平分∠EAF,于是利用角平分线的性质定理得到EB=EH,FD=FH,则可对③④进行判断;设BE=x,则EF=2x,CE=1-x,利用等腰直角三角形的性质得到2x=(1-x),解方程,则可对②进行判断.【详解】解:∵四边形ABCD为正方形,

∴AB=AD,∠BAD=∠B=∠D=90°,

在Rt△ABE和Rt△ADF中,,

∴Rt△ABE≌Rt△ADF(HL),

∴∠1=∠2,

∵∠EAF=45°,

∴∠1=∠2=∠22.5°,所以①正确;

连接EF、AC,它们相交于点H,如图,

∵Rt△ABE≌Rt△ADF,

∴BE=DF,

而BC=DC,

∴CE=CF,

∵AE=AF,

∴AC垂直平分EF,AH平分∠EAF,

∴EB=EH,FD=FH,

∴BE+DF=EH+HF=EF,所以④错误;

∴△ECF的周长=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正确;

设BE=x,则EF=2x,CE=1-x,

∵△CEF为等腰直角三角形,

∴EF=CE,即2x=(1-x),解得x=-1,

∴BE=-1,

Rt△ECF中,EH=FH,

∴CH=EF=EH=BE=-1,

∵CH⊥EF,

∴点C到EF的距离是-1,

所以②错误;

本题正确的有:①③;

故选:C.【点睛】本题考查四边形的综合题:熟练掌握正方形的性质和角平分线的性质定理.解题的关键是证明AC垂直平分EF.4、B【解析】

设AB=x米,则AE=(100+x)米,然后利用特殊角的三角函数值表示出DE,EC,最后利用CD=DE+EC=1000即可求出x的值.【详解】设AB=x米,则AE=(100+x)米,在Rt△AED中,∵,则DE==(100+x),在Rt△AEC中,∠C=45°,∴CE=AE=100+x,由题意得,(100+x)+(100+x)=1000,解得x=250,即AB=250米,故选:B.【点睛】本题主要考查解直角三角形,掌握特殊角的三角函数值是解题的关键.5、C【解析】如图,当x=2时,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=1.故选C.6、A【解析】

根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.【详解】A.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分线,∴AB=AD,CD=BC,∴∠ABD=∠ADB,∠CBD=∠CDB,∵∠OAB=∠OBA,∴∠OAB=∠OBA=45°,∵OC与OA的关系不确定,∴无法证明四边形ABCD的形状,故此选项正确;B.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分线,∴AB=AD,CD=BC,∴∠ABD=∠ADA,∠CBD=∠CDB,∵∠OBA=∠OBC,∴∠ABD=∠ADB=∠CBD=∠CDB,BD=BD,∴△ABD≌△CBD,∴AB=BC=AD=CD,∴四边形ABCD是菱形,故此选项错误;C.∵AD∥BC,∴∠DAC=∠ACB,∵∠AOD=∠BOC,BO=DO,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,故此选项错误;D.∵AD=BC,BO=DO,∠BOC=∠AOD=90°,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,故此选项错误.故选:A.【点睛】此题考查菱形的判定,解题关键在于掌握菱形的三种判定方法.7、B【解析】

每个队要比(x-1)场,根据题意可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,12x(x−1)=3×2,

即12x(x−1)=6,

故选:【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的单循环问题.8、A【解析】试题分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6考点:(1)旋转的性质;(2)正方形的性质;(3)等腰直角三角形的性质9、D【解析】

根据题意过E作EK垂直于直线CD,垂足为K,再过E作EL垂直于直线BC,垂足为L,只要证明,则可计算.【详解】解:根据题意过E作EK垂直于直线CD,垂足为K,再过E作EL垂直于直线BC,垂足为L.四边形ABCD为正方形EL=EK为直角三角形故选D.【点睛】本题主要考查正方形的性质,关键在于根据题意做辅助线.10、C【解析】

试题分析:两次降价后的商品的售价=降价前的商品的售价×(1-平均每次降价的百分率)2.由题意可列方程为.选:C.考点:根据实际问题列方程11、C【解析】试题解析:根据题意得:解得:故选C.12、C【解析】

利用一元二次方程解的定义对各选项分别进行判断.【详解】解:当x=3时,x2=9,所以x=3不是方程x2=3的解;当x=3时,x2﹣4x﹣3=9﹣12﹣3=﹣6,所以x=3不是方程x2﹣4x﹣3=0的解;当x=3时,x2﹣4x=9﹣12=﹣3,所以x=3是方程x2﹣4x=﹣3的解;当x=3时,x(x﹣1)=6,x﹣3,0,所以x=3是方程x(x﹣1)=x﹣3的解.故选:C.【点睛】本题考查了一元二次方程根的定义,即把根代入方程此时等式成立二、填空题(每题4分,共24分)13、2或4【解析】

根据题意分两种情况,分别画出图形,证明△是等边三角形,根据直角三角形的性质求出OD,即可得到答案.【详解】若绕点D顺时针旋转△AED得到△,连接,∵,,∴∠A=30°,∵,∴AB=4,∵点D是AB的中点,∴AD=2,∵,∴AD==2,∠=60°,∴△是等边三角形,∴=,∠D=60°,且∠EAD=30°,∴AE平分∠D,∴AE是的垂直平分线,∴OD=AD=,∵AE=DE,∴∠EAD=∠EDA=30°,∴DE,∴2;若绕点D顺时针旋转△AED得到△,同理可求=4,故答案为:2或4.【点睛】此题考查旋转的性质,直角三角形30°角所对的直角边等于斜边一半的性质,等边三角形的判定及性质,三角函数.14、【解析】

利用勾股定理直接计算可得答案.【详解】解:由勾股定理得:斜边故答案为:.【点睛】本题考查的是勾股定理的应用,掌握勾股定理是解题的关键.15、10【解析】

利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,∴=0.4,解得:n=10.故答案为:10.【点睛】此题考查利用频率估计概率,掌握运算法则是解题关键16、4【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】解:方程两边都乘以(x-2),得,∵原方程的增根是,把增根代入,得:,∴,故答案为:4.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17、1cm【解析】

根据题意,将纸板的四个角截去四个相同的小正方形后,得到一个底面积为100的无盖长方体纸盒,设截去的小正方形的边长为,根据底面的面积公式,列一元二次方程求解即可.【详解】解:设截去的小正方形的边长为,由题意得,,整理得,解得.当时,<0,<0,不符合题意,应舍去;当时,>0,>0,符合题意,所以=1.故截去的小正方形的边长为1cm.故答案为:1cm【点睛】本题考查一元二次方程的应用,根据题意将无盖长方体纸盒的底面面积表示出来,列关于x的一元二次方程求解即可.18、﹣a【解析】

根据各点在数轴上的位置判断出a、b的符号及绝对值的大小,再根据有理数的加法法则和二次根式的性质,把原式进行化简即可.【详解】解:由数轴可知a<0<b,且|a|>|b|,则a+b<0,∴原式=b+|a+b|=b﹣(a+b)=b﹣a﹣b=﹣a,故答案为﹣a.【点睛】本题考查的是实数与数轴,二次根式的性质,以及有理数的加法法则,熟知实数与数轴上各点是一一对应关系及绝对值性质是解答此题的关键.三、解答题(共78分)19、证明见解析.【解析】

首先根据平行四边形的性质,可得AD∥BC,AD=BC,BC∥EF,BC=EF,进而得出AD∥EF,AD=EF,即可判定.【详解】解:∵四边形ABCD和BEFC都是平行四边形,∴AD∥BC,AD=BC,BC∥EF,BC=EF.∴AD∥EF,AD=EF.∴四边形AEFD是平行四边形.【点睛】此题主要考查利用平行四边形的性质进行平行四边形的判定,熟练掌握,即可解题.20、(1)甲厂家的总费用:y甲=140x;乙厂家的总费用:当0<x≤10时,y乙=180x,当x>10时,y乙=110x+1100;(1)详见解析.【解析】

(1)根据题目中的数量关系即可得到甲、乙两厂家收取的总费用y(元)与x(米1)之间的函数关系式;(1)分别画出甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象,结合图象分析即可.【详解】解:(1)甲厂家的总费用:y甲=100×0.7x=140x;乙厂家的总费用:当0<x≤10时,y乙=100×0.9x=180x,当x>10时,y乙=100×0.9×10+100×0.6(x﹣10)=110x+1100;(1)甲、乙两厂家收取的总费用y(元)与x(米1)的函数图象如图所示:若y甲=y乙,140x=110x+1100,x=60,根据图象,当0<x<60时,选择甲厂家;当x=60时,选择甲、乙厂家都一样;当x>60时,选择乙厂家.【点睛】本题主要考查了一次函数在实际生活中的应用,涉及到的知识有运用待定系数法求函数的解析式,平面直角坐标系中交点坐标的求法,函数图象的画法等,从图表及图象中获取信息是解题的关键,属于中档题.21、【解析】

先将分式化简,然后代入即可.【详解】解:当x=−1时原式.【点睛】本题主要考查分式方程的化简,熟练分式方程化简步骤是解答此题的关键.22、(1)一次函数的解析式为;(2)1.【解析】

(1)首先根据正比例函数解析式求得m的值,再进一步运用待定系数法求得一次函数的解析式;(2)根据(1)中的解析式,令y=0求得点C的坐标,从而求得三角形的面积.【详解】解:(1)由题可得,把点A(m,2)代入正比例函数y=2x得2=2mm=1所以点A(1,2)因为一次函数图象又经过点B(-2,-1),所以解方程组得这个一次函数的解析式为(2)因为一次函数图象与x轴的交点为D,所以点D的坐标为(-1,0)因为的底为OD=1,高为A点的纵坐标2所以【点睛】此题综合考查了待定系数法求函数解析式、直线与坐标轴的交点的求法,关键是根据正比例函数解析式求得m的值.23、(1);(2).【解析】

(1)与互为有理化因式,根据题意给出的方法,即可求出答案.(2)与互为有理化因式,根据题意给出的方法即可求出答案.【详解】解:(1)==(2)==【点睛】本题考查了分母有理化,能找出分母的有理化因式是解此题的关键.24、(1)出发1秒后,的面积等于6;(2)出发0秒或秒后,的长度等于7.【解析】

(1)设秒后,的面积等于6,根据路程=速度×时间,即可用x表示出AP、BQ和BP的长,然后根据三角形的面积公式列一元二次方程,并解方程即可;(2)设秒后,的长度等于7,根据路程=速度×时间,即可用y表示出AP、BQ和BP的长,利用勾股定理列一元二次方程,并解方程即可.【详解】解:(1)设秒后,的面积等于6,∵点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动∴,∴则有∴(此时2×6=12>BC,故舍去)答:出发1秒后,的面积等于6(2)设秒后,的长度等于7∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论