版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年潮安龙湖中学数学八年级下册期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8 B.9 C.10 D.112.不等式组的解集在数轴上表示为()A. B.C. D.3.下列命题中,假命题的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线互相垂直平分的四边形是菱形D.对角线相等且互相垂直的四边形是正方形4.下列运算错误的是()A. B.C. D.5.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定6.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据方法是()A.直接观察 B.查阅文献资料 C.互联网查询 D.测量7.下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a9.如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为()A.5 B.-5 C.5-2 D.2-510.如图,在平行四边行ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF等于()A.3.5 B.4 C.4.5 D.511.分式有意义,则的取值范围是()A. B. C. D.12.已知n是自然数,是整数,则n最小为()A.0 B.2 C.4 D.40二、填空题(每题4分,共24分)13.一次函数y=kx+b的图象与函数y=2x+1的图象平行,且它经过点(﹣1,1),则此次函数解析式为_____.14.在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.15.如图,四边形ABCD是平行四边形,添加一个条件:________,可使它成为矩形.16.如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=6,BE=2,DH=1,则图中阴影部分的面积是____.17.当x=2018时,的值为____.18.若一组数据,,,,的平均数是,则__________.,这组数据的方差是_________.三、解答题(共78分)19.(8分)某中学为了了解八年级学生的业余爱好,抽查了部分学生,并制如下表格和条形统计图:频数频率体育250.25美术30a音乐b0.35其他100.1请根据图完成下面题目:(1)抽查人数为_____人,a=_____.(2)请补全条形统计图;(3)若该校八年级有800人,请你估算该校八年级业余爱好音乐的学生约有多少人?20.(8分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为的比例计入每人的最后总分,有4位应聘者的得分如下所示:项目得分应聘者专业知识英语水平参加社会实践与社团活动等A858590B858570C809070D809050(1)写出4位应聘者的总分;(2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?21.(8分)已知:如图,在梯形中,,,是上一点,且,,求证:是等边三角形.22.(10分)如图,已知△ABC中,∠B=90º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.23.(10分)解方程组:.24.(10分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为,图①中m的值为;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.25.(12分)如图所示,点O是矩形ABCD对角线AC的中点,过点O作EFAC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.26.计算能力是数学的基本能力,为了进一步了解学生的计算情况,初2020级数学老师们对某次考试中第19题计算题的得分情况进行了调查,现分别从A、B两班随机各抽取10名学生的成绩如下:A班10名学生的成绩绘成了条形统计图,如下图,B班10名学生的成绩(单位:分)分别为:9,8,9,10,9,7,9,8,10,8经过老师对所抽取学生成绩的整理与分析,得到了如下表数据:A班B班平均数8.3a中位数b9众数8或10c极差43方差1.810.81根据以上信息,解答下列问题.(1)补全条形统计图;(2)直接写出表中a,b,c的值:a=,b=,c=;(3)根据以上数据,你认为A、B两个班哪个班计算题掌握得更好?请说明理由(写出其中两条即可):.(4)若9分及9分以上为优秀,若A班共55人,则A班计算题优秀的大约有多少人?
参考答案一、选择题(每题4分,共48分)1、C【解析】
利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=1.故选C.【点睛】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.2、C【解析】
先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.3、D【解析】
根据平行四边形,矩形,菱形和正方形的对角线进行判断即可.【详解】A、矩形的对角线相等,是真命题;B、平行四边形的对角线互相平分,是真命题;C、对角线互相垂直平分的四边形是菱形,是真命题;D、对角线平分、相等且互相垂直的四边形是正方形,是假命题;故选:D.【点睛】本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.4、A【解析】
根据二次根式的乘法法则和二次根式的性质逐个判断即可.【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意;故选:A.【点睛】本题考查了二次根式的乘除和二次根式的性质,能灵活运用二次根式的乘法法则进行化简是解此题的关键,注意.5、A【解析】因为,,所以甲的成绩比乙的成绩稳定.6、D【解析】本题考查的是调查收集数据的过程与方法根据八某校年级(3)班体训队员的身高即可判断获得这组数据的方法.由题意得,获得这组数据方法是测量,故选D.思路拓展:解答本题的关键是掌握好调查收集数据的过程与方法.7、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,也是中心对称图形,故此选项正确;C.是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项错误.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、B【解析】
根据常量的定义判断即可,常量就是不变的量,不随自变量的变化而变化.【详解】解:根据题意长方形的周长p=60m,所以常量是p,故选:B.【点睛】本题主要考查常量的定义,是函数的基本知识点,应当熟练掌握.9、B【解析】
根据勾股定理列式求出x2,再利用平方根的相反数定义解答.【详解】由图可知,x2=12+22=5,
则x1=−5,x2=5(舍去).
故选:B.【点睛】考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.10、B【解析】分析:由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=1,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.详解:∵四边形ABCD是平行四边形,∴BC=AD=1.∵点E、F分别是BD、CD的中点,∴EF=BC=×1=2.故选B.点睛:本题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.11、A【解析】
本题主要考查分式有意义的条件:分母不能为0,分式有意义.【详解】分式有意义,则x+1≠0,即.故选:A【点睛】考核知识点:分式有意义的条件.理解定义是关键.12、C【解析】
求出n的范围,再根据是整数得出(211-n)是完全平方数,然后求满足条件的最小自然数是n.【详解】解:∵n是自然数,是整数,且211-n≥1.
∴(211-n)是完全平方数,且n≤211.
∴(211-n)最大平方数是196,即n=3.
故选:C.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.二、填空题(每题4分,共24分)13、y=2x+3【解析】
根据图象平行可得出k=2,再将(-1,1)代入可得出函数解析式.【详解】∵函数y=kx+b的图象平行于直线y=2x+1,∴k=2,将(-1,1)代入y=2x+b得:1=-2+b,解得:b=3,∴函数解析式为:y=2x+3,故答案为:y=2x+3.【点睛】本题考查了待定系数法求一次函数解析式,关键是掌握两直线平行则k值相同.14、(5,1)【解析】【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1),故答案为(5,1).【点睛】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.15、∠ABC=90°(或AC=BD等)【解析】本题是一道开放题,只要掌握矩形的判定方法即可.由有一个角是直角的平行四边形是矩形.想到添加∠ABC=90°;由对角线相等的平行四边形是矩形.想到添加AC=BD.16、11【解析】
根据平移的性质可得到相等的边与角,利用平行线分线段成比例可求出EC,再根据即可得到答案.【详解】解:由平移的性质知,DE=AB=6,HE=DE-DH=5,CF=BE=2,HC∥DF,∠DEF=∠B=90°,∴HE:DE=EC:EF=EC:(EC+CF),即5:6=EC:(EC+2),∴EC=10,EF=EC+CF=10+2=12故答案为:11.【点睛】本题利用了平行线截线段对应成比例和平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17、1.【解析】
先通分,再化简,最后代值即可得出结论.【详解】∵x=2018,∴====x﹣1=2018﹣1=1,故答案为:1.【点睛】此题主要考查了分式的加减,找出最简公分母是解本题的关键.18、【解析】
根据平均数的计算方法可求出a,然后根据方差公式求方差即可.【详解】∵,,,,的平均数是,∴1+3+a+2+5=3×5,∴a=4,S2=[(1-3)2+(3-3)2+(4-3)2+(2-3)2+(5-3)2]÷5=2.故答案为:4,2.【点睛】本题考查了算术平均数和方差的计算,熟练掌握计算公式是解答本题的关键.算术平均数的计算公式是:,方差的计算公式为:.三、解答题(共78分)19、(1)100;0.3;(2)补图见解析;(3)280人.【解析】
(1)根据爱好体育的有30人,频率为0.25可求出调查的人数,进而可得出a、b值;(2)根据b值补全条形统计图即可;(3)用爱好音乐的学生所占百分比乘以八年级的人数即可得答案.【详解】(1)25÷0.25=100(人),∴a=30÷100=0.3,故答案为:100;0.3(2)b=100×0.35=35(人),补全条形统计图如图:(3)800×0.35=280(人)答:该校八年级业余爱好音乐的学生约有280人.【点睛】本题考查读条形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)A总分为86分,B总分为82分,C总分为81分,D总分为82分;(2)见详解【解析】
(1)求四位应聘者总分只需将各部分分数按比例相加即可;
(2)根据方差的意义分析即可.【详解】解:(1)应聘者A总分为85×50%+85×30%+90×20%=86分;
应聘者B总分为85×50%+85×30%+70×20%=82分;
应聘者C总分为80×50%+90×30%+70×20%=81分;
应聘者D总分为90×50%+90×30%+50×20%=82分;(2)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.【点睛】本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.21、见解析.【解析】
由已知条件证得四边形AECD是平行四边形,则CE=AD,从而得出CE=CB,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.【详解】证明:,,四边形是平行四边形,,,,是等边三角形.【点睛】本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.22、(1);(2);(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形【解析】
(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)设出发t秒钟后,△PQB能形成等腰三角形,则BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时,则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时,则BC+CQ=24,易求得t;③当BC=BQ时,过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【详解】(1)当t=2时BQ=2×2=4cm,BP=AB-AP=16-2×1=14cm,∠B=90°,∴PQ==cm(2)依题意得:BQ=2t,BP=16-t2t=16-t解得:t=即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时(如下图),则∠C=∠CBQ,∵∠ABC=90°∴∠CBQ+∠ABQ=90°∠A+∠C=90°∴∠A=∠ABQ∴BQ=AQ∴CQ=AQ=10∴BC+CQ=22∴t=22÷2=11秒②当CQ=BC时(如图2),则BC+CQ=24∴t=24÷2=12秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,则BE=,∴CE=,故CQ=2CE=14.4,所以BC+CQ=26.4,∴t=26.4÷2=13.2秒由上可知,当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形【点睛】此题考查勾股定理,等腰三角形的判定,解题关键在于作辅助线.23、,,,.【解析】
由①得(x﹣y)(x﹣2y)=0,即x﹣y=0,x﹣2y=0,然后将原方程组化为或求解即可.【详解】,由①,得(x﹣y)(x﹣2y)=0,∴x﹣y=0,x﹣2y=0,所以原方程组可以变形为或,解方程组,得,;解方程组,得,,所以原方程组的解为:,,,.【点睛】本题考查了二元二次方程组的解法,解题思路类似与二元一次方程组,通过代入消元法转化为一元二次方程求解即可.24、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.【解析】分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.故答案为50、1;(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;(Ⅲ)×350=2.答:估计该校3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024农村建房承包工不包料合同
- 《REL微机保护》课件
- 2024互联网网站制作合同书
- 妇产科一般分娩护理查房
- 《急性阑尾炎实训》课件
- 2024水运工程施工监理合同范本试行
- 2024代理记账合同样本
- 2024某工程劳务分包合同
- 2024电设备合同能源管理合同范本
- 2024赠与合同样书
- 中外政治思想史-形成性测试四-国开(HB)-参考资料
- 沟通技巧与商务礼仪
- 18 奇妙的建筑 (教案)岭南版美术三年级上册
- 小学三通两平台汇报
- 防火巡查记录表防火检查记录表
- “校园周边环境安全隐患”自检自查(排查)记录表
- 高二上学期日语阅读四篇自测
- 大学生职业生涯规划成长赛道 (第二稿)
- JB T 6464-2006额定电压1kV(Um=1.2kV)到35kV行业标准
- 呼吸科健康宣教
- 人体身体成分健康分析报告
评论
0/150
提交评论