江苏省盐城滨海县联考2024年八年级数学第二学期期末预测试题含解析_第1页
江苏省盐城滨海县联考2024年八年级数学第二学期期末预测试题含解析_第2页
江苏省盐城滨海县联考2024年八年级数学第二学期期末预测试题含解析_第3页
江苏省盐城滨海县联考2024年八年级数学第二学期期末预测试题含解析_第4页
江苏省盐城滨海县联考2024年八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城滨海县联考2024年八年级数学第二学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.由线段a、b、c组成的三角形不是直角三角形的是A.,, B.,,C.,, D.,,2.湖州是“两山”理论的发源地,在一次学校组织的以“学习两山理论,建设生态文明”为主题的知识竞赛中,某班6名同学的成绩如下(单位:分):97,99,95,92,92,93,则这6名同学的成绩的中位数和众数分别为()A.93分,92分 B.94分,92分C.94分,93分 D.95分,95分3.若关于x,y的二元一次方程组的解为,一次函数y=kx+b与y=mx+n的图象的交点坐标为()A.(1,2) B.(2,1) C.(2,3) D.(1,3)4.不等式3(x-2)≥x+4的解集是(

)A.x≥5 B.x≥3 C.x≤5 D.x≥-55.若分式在实数范围内有意义,则实数的取值范围是()A. B. C. D.6.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是()A. B. C., D.7.如图,把一个边长为1的正方形放在数轴E,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为().A.2 B.1.4 C.3 D.1.78.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状 B.调查你所在的班级同学的身高情况C.调查我市食品合格情况 D.调查九江市电视台《九江新闻》收视率9.如图,第一个图形中有4个“”,第二个图形中有7个“”,第三个图形中有11个“”,按照此规律下去,第8个图形中“”的个数为().A.37 B.46 C.56 D.6710.下列汉字或字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.11.如图,已知AB=DC,下列所给的条件不能证明△ABC≌△DCB的是()A.∠A=∠D=90° B.∠ABC=∠DCB C.∠ACB=∠DBC D.AC=BD12.一次函数的图象如图所示,当时,x的取值范围是A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知在中,,点是延长线上的一点,,点是上一点,,连接,、分别是、的中点,则__________.14.如图,菱形由6个腰长为2,且全等的等腰梯形镶嵌而成,则菱形的对角线的长为_____.15.在数轴上表示实数a的点如图所示,化简(a-5)2+|a-2|的结果为____________.16.比较大小:_______2(填“>”或“<”).17.如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4,则□ABCD的面积等于________.18.2019年1月18日,重庆经开区新时代文明实践“五进企业”系列活动----2019年新春游园会成功矩形,这次新春游园会的门票分为个人票和团体票两大类其中个人票设置有三种,票得种类夜票(A)平日普通票(B)指定日普通票(C)某社区居委会欲购买个人票100张,其中B种票的张数是A种票的3倍还多8张,设购买A种票的张数为x,C种票张数为y,则化简后y与x之间的关系式为:_______(不必写出x的取值范围)三、解答题(共78分)19.(8分)定义:如图(1),,,,四点分别在四边形的四条边上,若四边形为菱形,我们称菱形为四边形的内接菱形.动手操作:(1)如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由个小正方形组成一个大正方形,点、在格点上,请在图(2)中画出四边形的内接菱形;特例探索:(2)如图3,矩形,,点在线段上且,四边形是矩形的内接菱形,求的长度;拓展应用:(3)如图4,平行四边形,,,点在线段上且,①请你在图4中画出平行四边形的内接菱形,点在边上;②在①的条件下,当的长最短时,的长为__________20.(8分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=a,CF=b,写出求BE的长的思路.21.(8分)武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间分成、、、四个等级(等:,等:,等:,等:;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:(1)组的人数是____人,并补全条形统计图.(2)本次调查的众数是_____等,中位数落在_____等.(3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.22.(10分)(感知)如图①在等边△ABC和等边△ADE中,连接BD,CE,易证:△ABD≌△ACE;(探究)如图②△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求证:△ABD∽△ACE;(应用)如图③,点A的坐标为(0,6),AB=BO,∠ABO=120°,点C在x轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为.23.(10分)如图,矩形中,是的中点,延长,交于点,连接,.(1)求证:四边形是平行四边形;(2)当平分时,猜想与的数量关系,并证明你的结论.24.(10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?25.(12分)某G20商品专卖店每天的固定成本为400元,其销售的G20纪念徽章每个进价为3元,销售单价与日平均销售的关系如下表:销售单价(元)45678910日平均销售量(瓶)560520480440400360320(1)设销售单价比每个进价多x元,用含x的代数式表示日销售量.(2)若要使日均毛利润达到1840元(毛利润=总售价﹣总进价﹣固定成本),且尽可能多的提升日销售量,则销售单价应定为多少元?26.如图,在平行四边形中,点、分别是、上的点,且,,求证:(1);(2)四边形是菱形.

参考答案一、选择题(每题4分,共48分)1、D【解析】

A、72+242=252,符合勾股定理的逆定理,是直角三角形;

B、42+52=()2,符合勾股定理的逆定理,是直角三角形;

C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;

D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.

故选D.2、B【解析】

利用中位数和众数的定义求解即可.【详解】解:将这组数据按从小到大的顺序排列为:1、1、93、95、97、99,处于中间位置的数是93,95,它们的平均数是94,那么由中位数的定义可知,这组数据的中位数是94;

在这一组数据中1出现次数最多,故众数是1.

故选:B.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两个数的平均数.3、A【解析】

函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.【详解】∵关于x,y的二元一次方程组的解为,∴一次函数y=kx+b与y=mx+n的图象的交点坐标为(1,2).故选A.【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.4、A【解析】

去括号、移项,合并同类项,系数化成1即可.【详解】3(x-2)≥x+43x-6≥x+42x≥10∴x≥5故选A.【点睛】本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.5、D【解析】

根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:,,故选:.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.6、D【解析】

根据中位数、众数的定义即可解决问题.【详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【点睛】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.7、B【解析】

根据勾股定理求出OA的长,根据实数与数轴的知识解答.【详解】解:则点A对应的数是:1.4故选:B【点睛】本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.8、B【解析】

普查的调查结果比较准确,适用于精确度要求高的、范围较小的调查,抽样调查的调查结果比较近似,适用于具有破坏性的、范围较广的调查,由此即可判断.【详解】解:A选项全国中学生人数众多,调查范围广,适合抽样调查,故A不符合题意;B选项所在班级同学人数不多,身高要精确,适合普查,故B符合题意;C选项我市的食品数量众多,调查范围广,适合抽样调查,故C不符合题意;D选项调查收视率范围太广,适合抽样调查,故D不符合题意.故选:B.【点睛】本题考查了抽样调查和普查,掌握抽样调查和普查各自的特点是进行灵活选用的关键.9、B【解析】

设第n个图形有an个“•”(n为正整数),观察图形,根据给定图形中“•”个数的变化可找出变化规律“an=+1(n为正整数)”,再代入n=8即可得出结论.【详解】设第n个图形有an个“•”(n为正整数).

观察图形,可知:a1=1+2+1=4,a2=1+2+3+1=7,a3=1+2+3+4+1=11,a4=1+2+3+4+5+1=16,…,

∴an=1+2+…+n+(n+1)+1=+1(n为正整数),

∴a8=+1=1.

故选:B.【点睛】考查了规律型:图形的变化类,根据各图形中“•”个数的变化找出变化规律“an=+1(n为正整数)”是解题的关键.10、C【解析】试题分析:A.是轴对称图形,不是中心对称图形.故错误;B.是轴对称图形,不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.考点:1.中心对称图形;2.轴对称图形.11、C【解析】解:AB=DC,BC为△ABC和△DCB的公共边,A、∠A=∠D=90°满足“HL”,能证明△ABC≌△DCB;B、∠ABC=∠DCB满足“边角边”,能证明△ABC≌△DCB;C、∠ACB=∠DBC满足“边边角”,不能证明△ABC≌△DCB;D、AC=BD满足“边边边”,能证明△ABC≌△DCB.故选C.12、A【解析】

解:由图像可知,当时,x的取值范围是.故选A.二、填空题(每题4分,共24分)13、13【解析】

根据题意连接,取的中点,连接,,利用三角形中位线定理得到,,再根据勾股定理即可解答.【详解】连接,取的中点,连接,,∵、分别是、的中点,∴OM=BE,ON=AD,∴,,∵、分别是、的中点,的中点,∴OM∥EB,ON∥AD,且,∴∠MON=90°,由勾股定理,.故答案为:13.【点睛】此题考查三角形中位线定理,勾股定理,解题关键在于作辅助线.14、【解析】

根据图形可知∠ADC=2∠A,又两邻角互补,所以可以求出菱形的锐角内角是60°;再根据AD=AB可以得出梯形的上底边长等于腰长,即可求出梯形的下底边长,所以菱形的边长可得,线段AC便不难求出.【详解】根据图形可知∠ADC=2∠A,又∠ADC+∠A=180°,∴∠A=60°,∵AB=AD,∴梯形的上底边长=腰长=2,∴梯形的下底边长=4(可以利用过上底顶点作腰的平行线得出),∴AB=2+4=6,∴AC=2ABsin60°=2×6×=6.故答案为:6.【点睛】本题考查的是等腰梯形的性质,仔细观察图形得到角的关系和梯形的上底边长与腰的关系是解本题的关键.15、3.【解析】试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.考点:绝对值意义与化简.16、<【解析】试题解析:故答案为:17、16【解析】

根据等边三角形性质求出OA=OB=AB,根据平行四边形性质推出AC=BD,根据矩形的判定推出平行四边形ABCD是矩形;求出AC长,根据勾股定理求出BC,根据矩形的面积公式求出即可.【详解】∵△AOB是等边三角形,∴OA=OB=AB=4,∵四边形ABCD是平行四边形,∴AC=2OA,BD=2OB,∴AC=BD,∴平行四边形ABCD是矩形.∵OA=AB=4,AC=2OA=8,四边形ABCD是矩形,∴∠ABC=90°,∵在Rt△ABC中,由勾股定理得:BC=,∴▱ABCD的面积是:AB×BC=4×4=16.【点睛】此题考查矩形的判定与性质,平行四边形的性质,勾股定理,等边三角形的性质,解题关键在于求出AC长.18、【解析】

根据题意,A种票的张数为x张,则B种票(3x+8)张,C种为y张,由总数为100张,列出等式即可.【详解】解:由题可知,,∴.故答案为:.【点睛】本题考查了函数关系式,根据数量关系,找准函数关系式是解题的关键.三、解答题(共78分)19、(1)详见解析;(2)3;(3)①详见解析;②的长为【解析】

(1)以EF为边,作一个菱形,使其各边长都为;(2)如图2,连接HF,证明△DHG≌△BFE(AAS),可得CG=3;(3)①根据(2)中可知DG=BE=2,根据对角线垂直平分作内接菱形EFGH;②如图5,当F与C重合,则A与H重合时,此时BF的长最小,就是BC的长,根据直角三角形30度角的性质和勾股定理计算可得结论.【详解】(1)如图2所示,菱形即为所求;(2)如图3,连接,四边形是矩形,,,,,四边形是菱形,,,,,即,,;(3)①如图4所示,由(2)知:,,作法:作,连接,再作的垂直平分线,交、于、,得四边形即为所求作的内接菱形;②如图5,当与重合,则与重合时,此时的长最小,过作于,中,,,,,四边形是菱形,,,即当的长最短时,的长为【点睛】本题是四边形的综合题,主要考查新定义−四边形ABCD的内接菱形,基本作图−线段的垂直平分线,菱形,熟练掌握基本作图及平行四边形、菱形和矩形的性质是解题的关键.20、(1)见解析;(2)见解析.【解析】【分析】(1)由平行四边形性质得AB∥CD,可得∠ABC+∠BCD=180°,又BE,CF分别是∠ABC,∠BCD的平分线,所以∠EBC+∠FCB=90°,可得∠BGC=90°;(2)作EH∥AB交BC于点H,连接AH交BE于点P.证四边形ABHE是菱形,可知AH,BE互相垂直平分,在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠ABC+∠BCD=180°.∵BE,CF分别是∠ABC,∠BCD的平分线,∴∠EBC=∠ABC,∠FCB=∠BCD.∴∠EBC+∠FCB=90°.∴∠BGC=90°.即BE⊥CF.(2)求解思路如下:a.如图,作EH∥AB交BC于点H,连接AH交BE于点P.b.由BE平分∠ABC,可证AB=AE,进而可证四边形ABHE是菱形,可知AH,BE互相垂直平分;c.由BE⊥CF,可证AH∥CF,进而可证四边形AHCF是平行四边形,可求AP=;d.在Rt△ABP中,由勾股定理可求BP,进而可求BE的长.【点睛】本题考核知识点:平行四边形,菱形.解题关键点:熟记平行四边形和菱形的性质和判定.21、(1)50;(2)众数是B等,中位数落在C等;(3)3325人.【解析】

(1)根据A的人数除以A所占的百分,可得调查的总人数,根据有理数的减法,可得C的人数;(2)根据众数的定义,中位数的定义,可得答案;(3)根据样本估计总体,可得答案.【详解】(1)调查的总人数40÷20%=200人,C组的人数=200﹣40﹣100﹣10=50,补充如图:(2)本次调查的众数是100,即B等,中位数是=75,落在C等;(3)3500×=3325人.答:该校今年有3500名学生,达到国家规定的阅读时间的人数约有3325人.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22、探究:见解析;应用:.【解析】

探究:由△DAE∽△BAC,推出,可得,由此即可解决问题;应用:当点D在AC的下方时,先判定△ABO∽△ADC,得出,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;当点D在AC的上方时,作B关于y轴的对称点B',则同理可得OD最小值为.【详解】解:探究:如图②中,∵∠BAC=∠DAE,∠ABC=∠ADE,∴△DAE∽△BAC,∠DAB=∠EAC,∴,∴,∴△ABD∽△ACE;应用:①当点D在AC的下方时,如图③−1中,作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,∴,即,又∵∠BAD=∠OAC,∴△ACO∽△ADB,∴∠ABD=∠AOC=90°,∵当OD⊥BE时,OD最小,过O作OF⊥BD于F,则△BOF为直角三角形,∵A点的坐标是(0,6),AB=BO,∠ABO=120°,∴易得OB=2,∵∠ABO=120°,∠ABD=90°,∴∠OBF=30°,∴OF=OB=,即OD最小值为;当点D在AC的上方时,如图③−2中,作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',∴∠AB'D=∠AOC=90°,∴当OD⊥B'E时,OD最小,过O作OF'⊥B'D于F',则△B'OF'为直角三角形,∵A点的坐标是(0,6),AB'=B'O,∠AB'O=120°,∴易得OB'=2,∵∠AB'O=120°,∠AB'D=90°,∴∠OB'F'=30°,∴OF'=OB'=,即OD最小值为.故答案为:.【点睛】本题属于相似形综合题,考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.23、(1)详见解析;(2)【解析】

(1)由矩形的性质可知,因而只需通过证明说明即可.(2)由已知条件易证是等腰直角三角形,即CD=DE,而AD=2DE,由矩形的性质即可知与的数量关系.【详解】解:(1)∵四边形是矩形,∴,∴.∵E是的中点,∴.又∵,∴.∴.又∵,∴四边形是平行四边形.(2).证明:∵平分,∴.∵,∴是等腰直角三角形,∴,∵E是的中点,∴,∵,∴.【点睛】本题主要考查了平行四边形的判定、矩形的性质,灵活应用矩形的性质是解题的关键.24、(1)25人(2)37分(3)第二次测试中得4分的学生有15人、得5分的学生有30人.【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论