云南省祥云县2024年数学八年级下册期末学业质量监测模拟试题含解析_第1页
云南省祥云县2024年数学八年级下册期末学业质量监测模拟试题含解析_第2页
云南省祥云县2024年数学八年级下册期末学业质量监测模拟试题含解析_第3页
云南省祥云县2024年数学八年级下册期末学业质量监测模拟试题含解析_第4页
云南省祥云县2024年数学八年级下册期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省祥云县2024年数学八年级下册期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.函数的自变量的取值范围是()A. B. C. D.2.如图,在中,,,,为边上一个动点,于点,上于点,为的中点,则的最小值是()A. B.C. D.3.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个 B.3个 C.4个 D.5个4.已知一次函数y=kx+b(k≠0)图象经过第二、三、四象限,则一次函数y=﹣bx+kb图象可能是()A. B. C. D.5.在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作垂直于x轴的直线l1和l2,探究直线l1、l2与函数y=3x的图像(双曲线)之间的关系,下列结论错误的是A.两条直线中总有一条与双曲线相交B.当m=1时,两条直线与双曲线的交点到原点的距离相等C.当m<0时,两条直线与双曲线的交点都在y轴左侧D.当m>0时,两条直线与双曲线的交点都在y轴右侧6.在□ABCD中,点P在对角线AC上,过P作EF∥AB,HG∥AD,记四边形BFPH的面积为S1,四边形DEPG的面积为S2,则S1与S2的大小关系是(

)A.S1>S2 B.S1=S2 C.S1<S2 D.无法判断7.如图是一个直角三角形,它的未知边的长x等于A.13 B. C.5 D.8.如图,点A在反比例函数y=kxx<0的图象上,过点A作x轴、y轴的垂线,垂足分别为点B、C,若AB=1.5,AC=4,则kA.-3 B.-4.5 C.6 D.-69.下列各组数中,以它们为边的三角形是直角三角形的是()A.1,2,3 B.9,16,25 C.12,15,20 D.1,2,10.分式运算正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,已知等边三角形ABC的边长为7,点D为AB上一点,点E在BC的延长线上,且CE=AD,连接DE交AC于点F,作DH⊥AC于点H,则线段HF的长为____________.12.为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90分,方差是2;小强五次成绩的平均数也是90分,方差是14.8,则小明和小强的成绩中,__________的成绩更稳定.13.今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?14.已知长方形的面积为6m2+60m+150(m>0),长与宽的比为3:2,则这个长方形的周长为_____.15.如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.16.若关于x的分式方程﹣=1无解,则m的值为_____.17.如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4,则□ABCD的面积等于________.18.把一元二次方程2x2﹣x﹣1=0用配方法配成a(x﹣h)2+k=0的形式(a,h,k均为常数),则h和k的值分别为_____三、解答题(共66分)19.(10分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.20.(6分)蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙7:30从M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝7:38从M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x(分)之间的函数图象如图所示.(1)求图中校车从第二个站点出发时点B的坐标;(2)求蒙蒙到达学校站点时的时间;(3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.21.(6分)已知,一次函数y=(1-3k)x+2k-1,试回答:(1)k为何值时,y随x的增大而减小?(2)k为何值时,图像与y轴交点在x轴上方?(3)若一次函数y=(1-3k)x+2k-1经过点(3,4).请求出一次函数的表达式.22.(8分)(1)化简:;(2)先化简,再求值:;其中a2,b23.(8分)如图1,在中,,,,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.直接用含t的代数式分别表示:______,______;是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.24.(8分)阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到例如,图1中阴影部分的面积可表示为;若将阴影部分剪下来,重新拼成一个矩形如图,它的长,宽分别是,,由图1,图2中阴影部分的面积相等,可得恒等式.(1)观察图3,根据图形,写出一个代数恒等式:______;(2)现有若干块长方形和正方形硬纸片如图4所示请你仿照图3,用拼图的方法推出恒等式,画出你的拼图并标出相关数据;(3)利用前面推出的恒等式和计算:①;②.25.(10分)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.26.(10分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)谁先出发早多长时间谁先到达B地早多长时间?(2)两人在途中的速度分别是多少?(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据分母不为零分式有意义,可得答案.【详解】解:由题意,得

2019-x≠0,

解得x≠2019,

故选:C.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.2、A【解析】

根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】∵在△ABC中,AB=3,AC=4,BC=5,

∴AB2+AC2=BC2,

即∠BAC=90°.

又∵PE⊥AB于E,PF⊥AC于F,

∴四边形AEPF是矩形,

∴EF=AP.

∵M是EF的中点,

∴AM=EF=AP.

因为AP的最小值即为直角三角形ABC斜边上的高,即等于,

∴AM的最小值是

故选A.【点睛】本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.3、C【解析】

试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质4、A【解析】

首先根据一次函数的性质确定k,b的符号,再确定一次函数y=﹣bx+kb系数的符号,判断出函数图象所经过的象限.【详解】∵一次函数y=kx+b经过第二,三,四象限,∴k<0,b<0,∴−b>0,kb>0,所以一次函数y=−bx+kb的图象经过一、二、三象限,故选:A.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.5、C【解析】

反比例函数y=3x的图象位于第一、三象限,过点A(m,0),B(m+2,0)垂直于x轴的直线l1和l2根据m【详解】解:反比例函数y=3x的图象位于第一、三象限,过点A(m,0),B(m+2,0)垂直于x轴的直线l1和l2

无论m为何值,直线l1和l2至少由一条与双曲线相交,因此A正确;

当m=1时,直线l1和l2与双曲线的交点为(1,3)(3,1)它们到原点的距离为10,因此B是正确的;

当m<0时,但m+2的值不能确定,因此两条直线与双曲线的交点不一定都在y轴的左侧,因此C选项是不正确的;

当m>0时,m+2>0,两条直线与双曲线的交点都在y轴右侧,是正确的,

故选:C【点睛】本题考查一次函数和反比例函数的图象和性质,根据m的不同取值,讨论得出不同结果.6、B【解析】【分析】先证四边形ABPE和四边形PFCG都是平行四边形,再利用平行四边形对角线平分四边形面积即可.【详解】因为,在□ABCD中,点P在对角线AC上,过P作EF∥AB,HG∥AD,所以,四边形边形ABPE和四边形PFCG都是平行四边形,所以,S△ABC=S△CDA,S△AEP=S△PHA,S△PFC=S△CGP,所以,S△ABC-S△AEP-S△PFC=S△CDA-S△PHA-S△CGP,所以,S△BFPH=S△DEPG,即:S1=S2故选:B【点睛】本题考核知识点:平行四边形性质.解题关键点:平行四边形对角线平分四边形面积.7、B【解析】

由勾股定理得:22+32=x2.【详解】由勾股定理得:22+32=x2.所以,x=故选:B【点睛】本题考核知识点:勾股定理.解题关键点:熟记勾股定理.8、D【解析】

由AB=1.5,AC=4可以得出矩形ABOC的面积,矩形ABOC的面积等于点A的横纵坐标的积的绝对值,即可得出答案.【详解】设A点的坐标为(x,y)由AB=1.5,AC=4可得矩形ABOC的面积=1.5×4=6∴xy又∵函数图像在第二象限故答案选择D.【点睛】本题考查的是反比例函数的几何意义,在反比例函数y=kx图像中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值9、D【解析】

根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+22≠32,∴不能构成直角三角形,故本选项不符合题意;B、∵92+162≠252,∴不能构成直角三角形,故本选项不符合题意;C、∵122+152≠202,∴不能构成直角三角形,故本选项不符合题意;D、∵12+22=2,∴能够构成直角三角形,故本选项符合题意.故选:D.【点睛】点评:本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、C【解析】

根据分式的运算法则即可判断.【详解】A.,故错误;B.,故错误;C.,正确D.,故错误故选C【点睛】此题主要考查分式的运算,解题的关键是熟知分式的性质.二、填空题(每小题3分,共24分)11、【解析】

证明:(1)过点D作DG∥BC交AC于点G,∴∠ADG=∠B,∠AGD=∠ACB,∠FDG=∠E,∵△ABC是等边三角形,∴AB=AC,∠B=∠ACB=∠A=60°,∴∠A=∠ADG=∠AGD=60°,∴△ADG是等边三角形,∴AD=DG∵AD=CE,∴DG=CE,在△DFG与△EFC中∴△DFG≌△EFC(AAS),∴GF=FC=GC又∵

DH⊥AC,∴AH=HG=AG,∴HF=HG+GF=AG+GC=AC=故答案为:【点睛】此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题12、小明【解析】

在平均数相等的前提下,方差或标准差越小,说明数据越稳定,结合题意可知,只需比较小明、小强两人成绩的方差即可得出答案.【详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8;

∴平均成绩一样,小明的方差小,则小明的成绩稳定.

故选A.【点睛】本题考查方差的实际应用,解题的关键是掌握方差的使用.13、8【解析】

根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可.【详解】解:设:在甲机换了x次.乙机换了y次.丙机换了z次.在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;∴由②-①,得:2y+8z=68,∴y+4z=34,∴y=34-4z,结合x+y+z=12,能满足上面两式的值为:∴;即在丙机换了8次.故答案为:8.【点睛】此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可.14、10m+1【解析】

对面积表达式进行变形,根据面积=长×宽,再根据长与宽的比是3:2,判断出长宽的表达式,继而得出周长.【详解】解:∵6m2+60m+11=6(m2+10m+25)=6(m+5)2=[3(m+5)][2(m+5)],且长:宽=3:2,∴长为3(m+5),宽为2(m+5),∴周长为:2[3(m+5)+2(m+5)]=10m+1.故答案为:10m+1【点睛】本题考查了用提取公因式和完全平方公式进行因式分解的实际应用,熟练掌握并准确分析是解题的关键.15、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA【解析】根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.16、﹣2或1【解析】

分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【详解】去分母得:x2﹣mx﹣3x+3=x2﹣x,解得:(2+m)x=3,由分式方程无解,得到2+m=0,即m=﹣2或,即m=1,综上,m的值为﹣2或1.故答案为:﹣2或1【点睛】此题考查了分式方程的解,注意分母不为0这个条件.17、16【解析】

根据等边三角形性质求出OA=OB=AB,根据平行四边形性质推出AC=BD,根据矩形的判定推出平行四边形ABCD是矩形;求出AC长,根据勾股定理求出BC,根据矩形的面积公式求出即可.【详解】∵△AOB是等边三角形,∴OA=OB=AB=4,∵四边形ABCD是平行四边形,∴AC=2OA,BD=2OB,∴AC=BD,∴平行四边形ABCD是矩形.∵OA=AB=4,AC=2OA=8,四边形ABCD是矩形,∴∠ABC=90°,∵在Rt△ABC中,由勾股定理得:BC=,∴▱ABCD的面积是:AB×BC=4×4=16.【点睛】此题考查矩形的判定与性质,平行四边形的性质,勾股定理,等边三角形的性质,解题关键在于求出AC长.18、【解析】

先将方程变形,利用完全平方公式进行配方.【详解】解:2x2﹣x﹣1=1,x2﹣x﹣=1,x2﹣x+﹣﹣=1,(x﹣)2﹣=1.∴h=,k=﹣.故答案是:,﹣.【点睛】考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.三、解答题(共66分)19、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【详解】解:(1)AB中点坐标为(,)即(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:,,代入数据得:,,解得:xD=6,yD=0,所以点D的坐标为(6,0);(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:,或,,故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,∵yC=0,∴yD=2或−2,代入到y=x+1中,可得D(2,2)或D(−6,−2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,,∴yC+yD=yA+yB=2+4,∵yC=0,∴yD=6,代入到y=x+1中,可得D(10,6)综上,符合条件的D点坐标为D(2,2)或D(−6,−2)、D(10,6).【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,难点在第三问,注意分类讨论,不要漏解,难度较大.20、(1)(14,1);(2)7点12分;(3)8分钟追上,路程3千米;【解析】

(1)首先求出校车的速度,因为校车在每个站点之间行驶速度相同,得出点A的坐标,进而求出点B的坐标;(2)由速度和B点坐标,求出BC的表达式,得知C点纵坐标为9,则横坐标为22,即蒙蒙到学校用了22分;(3)贝贝比蒙蒙乘坐的校车早2分钟到学校站点,则贝贝到学校用了20分,即E(20,9)又F(8,0),求出EF的表达式,贝贝乘坐出租车出发后追上蒙蒙乘坐的校车,即BC和EF的交点G(16,6),即可得知贝贝乘坐出租车出发后经过8分钟追上蒙蒙乘坐的校车,此时他们距学校站点的路程是3千米.【详解】解:(1)校车的速度为3÷6=0.1(千米/分钟),点A的纵坐标的值为3+0.1×(12-8)=1.故点B的坐标(14,1).(2)由(1)中得知,B(14,1),设BC的表达式为,将B代入,得C点纵坐标为9,则横坐标为22,即蒙蒙到学校用了22分,蒙蒙出发的时间为7:30,所以蒙蒙到达学校站点时的时间为7点12分.(3)贝贝比蒙蒙乘坐的校车早2分钟到学校站点,则贝贝到学校用了20分,即E(20,9)又F(8,0),设EF表达式为,解得贝贝乘坐出租车出发后追上蒙蒙乘坐的校车,即BC和EF的交点G,解得即G(16,6)故贝贝乘坐出租车出发后经过8分钟追上蒙蒙乘坐的校车,此时他们距学校站点的路程是3千米.【点睛】(1)此题主要考查一次函数的实际应用,校车的速度即为直线的斜率,校车在每个站点之间行驶速度相同,即可得解;(2)已知点坐标求一次函数解析式,直接代入即可得解,得出坐标要联系实际应用回答;(3)将两个一次函数解析式联合得解,再联系实际应用.21、(1);(2);(3)【解析】

(1)根据一次函数的性质可得出1﹣3k<0,解之即可得出结论;(2)根据一次函数图象与系数的关系结合一次函数的定义可得出关于k的一元一次不等式组,解之即可得出结论;(3)把点(3,4)代入一次函数,解方程即可.【详解】(1)∵一次函数y=(1-3k)x+2k-1中y随x的增大而减小,∴1-3k<0,

解得:,

∴当时,y随x的增大而减小.(2)∵一次函数y=(1-3k)x+2k-1的图象与y轴交点在x轴上方,

∴,

解得:k>,

∴当k>时,一次函数图象与y轴交点在x轴上方.(3)∵一次函数y=(1-3k)x+2k-1经过点(3,4),∴4=3×(1-3k)+2k-1,∴k=-,一次函数的表达式为:.【点睛】本题考查了一次函数的性质、一次函数的定义以及一次函数图象与系数的关系,解题的关键是:(1)根据一次函数的性质找出1﹣3k<0;(2)根据一次函数图象与系数的关系结合一次函数的定义找出关于k的一元一次不等式组.22、(1)﹣7a2b﹣6ab2﹣3c;(2),1.【解析】

(1)先去括号,然后合并同类项即可得出答案.(2)本题的关键根据去括号与合并同类项的法则将代数式化简,然后把给定的值代入求值.【详解】(1)原式=5a2b﹣10ab2+5c﹣8c﹣1a2b+4ab2=﹣7a2b﹣6ab2﹣3c;(2)原式a﹣2ab2a+2b2=﹣3ab2当a=﹣2,b时,原式=-3×(-2)6+6=1.【点睛】(1)本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.(2)本题考查了整式的混合运算,主要考查了单项式与多项式相乘以及合并同类项的知识点.关键是去括号,去括号要特别注意符号的处理.23、(1),;(2)详见解析;(3)2【解析】

由根据路程等于速度乘以时间可得,,,则,根据,,可得:,根据相似三角形的判定可得:∽,再根据相似三角形的性质可得:,即,从而解得:,(2)根据,当时,可判定四边形PDBQ为平行四边形,根据平行四边形的性质可得:,解得:,(3)根据题意可得:,当时,点的坐标为,当时,点的坐标为,设直线的解析式为:,则,解得:,因此直线的解析式为:,再根据题意得:点P的坐标为,点Q的坐标为,因此在运动过程中PQ的中点M的坐标为,当时,,因此点M在直线上,作轴于N,则,,由勾股定理得,,因此线段PQ中点M所经过的路径长为.【详解】由题意得,,,则,,,,∽,,即,解得:,故答案为:,,存在,,当时,四边形PDBQ为平行四边形,,解得:,则当时,四边形PDBQ为平行四边形,以点C为原点,以AC所在的直线为x轴,建立如图2所示的平面直角坐标系,由题意得:,当时,点的坐标为,当时,点的坐标为,设直线的解析式为:,则,解得:,直线的解析式为:,由题意得:点P的坐标为,点Q的坐标为,在运动过程中PQ的中点M的坐标为,当时,,点M在直线上,作轴于N,则,,由勾股定理得,,线段PQ中点M所经过的路径长为.【点睛】本题主要考查几何动点问题,解决本题的关键是要准确找出动点运动路线,动点运动长度与运动时间的关系,并结合几何图形中的等量关系列方程进行解答.24、(1);(2);(3)①1;②.【解析】

(1)根据面积的两种表达方式得到图3所表示的代数恒等式;(2)作边长为a+b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论