2024届上海市长宁区名校八年级下册数学期末复习检测模拟试题含解析_第1页
2024届上海市长宁区名校八年级下册数学期末复习检测模拟试题含解析_第2页
2024届上海市长宁区名校八年级下册数学期末复习检测模拟试题含解析_第3页
2024届上海市长宁区名校八年级下册数学期末复习检测模拟试题含解析_第4页
2024届上海市长宁区名校八年级下册数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市长宁区名校八年级下册数学期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠A=∠B=45,AB=4.以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2 B.4 C.8 D.162.如图所示,在平行四边形中,对角线和相交于点,交于点,若,则的长为()A. B. C. D.3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0) C.(,0) D.(3,0)4.下列根式中,与3是同类二次根式的是()A.18B.24C.27D.305.已知直角三角形的两直角边长分别为3和4,则斜边上的高为()A.5 B.3 C. D.6.若一个多边形的内角和是外角和的5倍,则这个多边形的边数是()A.12 B.10 C.8 D.117.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1∶2∶3B.三内角的度数之比为3∶4∶5C.三边长之比为3∶4∶5D.三边长的平方之比为1∶2∶38.已知点在抛物线上,则下列结论正确的是()A. B. C. D.9.某班体育委员对7位同学定点投篮进行数据统计,每人投10个,投进篮筐的个数依次为:5,6,5,3,6,8,1.则这组数据的平均数和中位数分别是()A.6,6 B.6,8 C.7,6 D.7,810.如图,是二次函数图象的一部分,下列结论中:①;②;③有两个相等的实数根;④.其中正确结论的序号为()A.①② B.①③ C.②③ D.①④11.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.512.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AC等于A.5 B.34 C.8 D.2二、填空题(每题4分,共24分)13.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是_____.14.如图,四边形是正方形,延长到,使,则__________°.15.在△ABC中,∠C=90°,若b=7,c=9,则a=_____.16.关于的一元二次方程x2+mx-6=0的一个根为2,则另一个根是.17.如图,中,,,,为的中点,若动点以1的速度从点出发,沿着的方向运动,设点的运动时间为秒(),连接,当是直角三角形时,的值为_____.18.使代数式有意义的x的取值范围是_______.三、解答题(共78分)19.(8分)在四边形ABCD中,E、F分别是边BC、CD的中点,连接AE,AF.(1)如图1,若四边形ABCD的面积为5,则四边形AECF的面积为____________;(2)如图2,延长AE至G,使EG=AE,延长AF至H,使FH=AF,连接BG、GH、HD、DB.求证:四边形BGHD是平行四边形;(3)如图3,对角线AC、BD相交于点M,AE与BD交于点P,AF与BD交于点N.直接写出BP、PM、MN、ND的数量关系.20.(8分)如图,在中,点D、E分别是边BC、AC的中点,过点A作交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当满足什么条件时,四边形图ADCF是菱形?为什么?21.(8分)如图,矩形放置在平面直角坐标系上,点分别在轴,轴的正半轴上,点的坐标是,其中,反比例函数y=

的图象交交于点.(1)_____(用的代数式表示)(2)设点为该反比例函数图象上的动点,且它的横坐标恰好等于,连结.①若的面积比矩形面积多8,求的值。②现将点绕点逆时针旋转得到点,若点恰好落在轴上,直接写出的值.22.(10分)如图,在▱ABCD中,,P,O分别为AD,BD的中点,延长PO交BC于点Q,连结BP,DQ,求证:四边形PBQD是菱形.23.(10分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证△ACD≌△BFD(2)求证:BF=2AE;(3)若CD=,求AD的长.24.(10分)如图,折叠长方形ABCD的一边AD,使点D落在BC上的点F处,已知AB=8,BC=10,求EC.25.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且CE=CF.(1)求证:BE=DF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?26.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.651.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?

参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:2、B【解析】

由平行四边形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.【详解】解:∵四边形ABCD是平行四边形,

∴OA=OC,AD∥BC,

∵OE∥BC,

∴OE∥AD,

∴OE是△ACD的中位线,

∵OE=4cm,

∴AD=2OE=2×4=8(cm).

故选:B.【点睛】此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.3、C【解析】

过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.4、C【解析】试题分析:A.18=32与B.24=26与C.27=33与D.30与3被开方数不同,故不是同类二次根式.故选C.考点:同类二次根式.5、D【解析】

根据勾股定理求出斜边的边长,在应用等积法即可求得斜边上的高.【详解】解:设斜边上的高为h,

由勾股定理得,三角形的斜边长=,

则,

解得,h=2.4,

故选D.【点睛】主要考查勾股定理及等积法在求高题中的灵活应用.6、A【解析】

根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=1.故选:A.【点睛】本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.7、B【解析】试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;

B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;

C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;

D、因为1+2=3,所以是直角三角形.

故选B.8、A【解析】

分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选:A【点睛】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况9、A【解析】

根据中位数和平均数的定义求解即可.【详解】解;这组数据的平均数=(5+6+5+3+6+8+1)÷7=6,

把5,6,5,3,6,8,1从小到大排列为:3,5,5,6,6,8,1,

最中间的数是6,

则中位数是6,

故选A.【点睛】本题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数10、D【解析】

根据二次函数的性质求解即可.【详解】①∵抛物线开口向上,且与y轴交点为(0,-1)∴a>0,c<0∵对称轴>0∴b<0∴∴①正确;②对称轴为x=t,1<t<2,抛物线与x轴的交点为x1,x2.其中x1为(m,0),x2.为(n,0)由图可知2<m<3,可知n>-1,则当x=-1时,y>0,则则②错误;③由图可知c=-1△=b2—4a(c+1)=b2,且b≠0∴③错误④由图可知,对称轴x=且1<<2∴故④正确;故选D.【点睛】本题考查的是二次函数,熟练掌握二次函数的图像是解题的关键.11、A【解析】这20个数的平均数是:,故选A.12、B【解析】

根据图1和图2得当t=3时,点P到达A处,即AB=3;当S=15时,点P到达点D处,可求出BC=5,利用勾股定理即可求解.【详解】解:当t=3时,点P到达A处,即AB=3,过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=12CD∴CD=6,当S=15时,点P到达点D处,则S=12CD•BC=3×BC=15则BC=5,由勾股定理得AD=AC=32故选:B.【点睛】本题考查了动点问题的函数图象、三角形面积公式等知识,看懂函数图象是解决问题的关键.二、填空题(每题4分,共24分)13、1【解析】

先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.【详解】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=140°,∴多边形的边数是:140°÷180°+2=3+2=1.故答案为:1.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n边形的内角和为:(n-2)×180°,n边形的外角和为:360°.14、22.5【解析】

根据正方形的性质求出∠CAB=∠ACB=45°,再根据AC=AE求出∠ACE=67.5°,由此即可求出答案.【详解】∵四边形ABCD是正方形,∴∠DAB=∠DCB=90°,∵AC是对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=67.5°,∴∠BCE=∠ACE-∠ACB=22.5°,故答案为:22.5°.【点睛】此题考查正方形的性质,等腰三角形的性质,三角形的内角和性质,是一道较为基础的题型.15、4【解析】

利用勾股定理:a2+b2=c2,直接解答即可【详解】∵∠C=90°∴a2+b2=c2∵b=7,c=9,∴a===4故答案为4【点睛】本题考查了勾股定理,对应值代入是解决问题的关键16、-1【解析】试题分析:因为方程x2+mx-6=0的一个根为2,所以设方程另一个根x,由根与系数的关系可得:2x=-6,所以x=-1.考点:根与系数的关系17、2或6或3.1或4.1.【解析】

先求出AB的长,再分①∠BDE=90°时,DE是ΔABC的中位线,然后求出AE的长度,再分点E在AB上和在BA上两种情况列出方程求解即可;②∠BED=90°时,利用∠ABC的余弦列式求出BE,然后分点E在AB上和在BA上两种情况列出方程求解即可.【详解】解:∵∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=BC÷=2÷=4,①∠BDE=90°时,如图(1)∵D为BC的中点,∴DE是ΔABC的中位线,∴AE=AB=×4=2,点E在AB上时,t=2÷1=2秒,点E在BA上时,点E运动的路程为4×2-2=6,t=6÷1=6;②∠BED=90°时,如图(2)BE=BD=×2×=点E在AB上时,t=(4-0.1)÷1=3.1,点E在BA上时,点E运动的路程为4+0.1=4.1,t=4.1÷1=4.1,综上所述,t的值为2或6或3.1或4.1.故答案为:2或6或3.1或4.1.【点睛】掌握三角形的中位线,三角形的中位线平行于第三边并且等于第三边的一半.含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.18、.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.三、解答题(共78分)19、(1)(2)证明见解析(3).【解析】

(1)连接AC,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;(2)连接EF,根据三角形中位线定理可得到BD与GH平行且相等,由此即可得证;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,通过证明△BPE≌△CQE可得BP=CQ,BP//CQ,同理:CO=ND,CO//ND,从而可得Q、C、O三点共线,继而通过证明△APM∽△AQC,可得PM:CQ=AM:AC,同理:MN:CO=AM:AC,即可得答案.【详解】(1)如图,连接AC,则有S△ABC+S△ACD=S四边形ABCD=5,∵E、F分别为BC、CD中点,∴S△AEC=S△ABC,S△AFC=S△ADC,∴S四边形AECF=S△AEC+S△AFC=S△ABC+S△ADC=S四边形ABCD=,故答案为:;(2)如图,连接EF,∵E、F分别是BC,CD的中点,∴EF∥BD,EF=BD.,∵EG=AE,FH=AF,∴EF∥GH,EF=GH.,∴BD∥GH,BD=GH.,∴四边形BGHD是平行四边形;(3)如图,延长PE至点Q,使EQ=EP,连接CQ,延长NF至点O,使OF=NG,连接CO,在△BPE和△CQE中,∴△BPE≌△CQE(SAS),∴BP=CQ,∠PBE=∠QCE,∴BP//CQ,同理:CO=ND,CO//ND,∴Q、C、O三点共线,∴BD//OQ,∴△APM∽△AQC,∴PM:CQ=AM:AC,同理:MN:CO=AM:AC,∴.【点睛】本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.20、(1)见解析;(2)当△ABC是直角三角形,且∠BAC=90°时,四边形ADCF是菱形,理由见解析.【解析】

(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;

(2)利用直角三角形的性质结合菱形的判定方法得出即可.【详解】(1)证明:∵点D、E分别是边BC、AC的中点,

∴DE∥AB,BD=CD,

∵AF∥BC,

∴四边形ABDF是平行四边形,

∴AF=BD,则AF=DC,

∵AF∥BC,

∴四边形ADCF是平行四边形;

(2)解:当△ABC是直角三角形,且∠BAC=90°时,四边形ADCF是菱形,

理由:∵△ABC是直角三角形,且∠BAC=90°又∵点D是边BC的中点,

∴AD=DC,

∴平行四边形ADCF是菱形.【点睛】本题考查平行四边形的判定与性质以及菱形的判定,熟练应用平行四边形的判定与性质是解题关键.21、(1)m﹣1;(2)①m2=2;②m=2+2.【解析】

(1)利用反比例函数图象上点的坐标特征可求出点D的坐标,结合点B的坐标可得出BD的长;(2)①过点P作PF⊥AB于点E,则PF=m﹣1,由△PBD的面积比矩形OABC面积多8,可得出关于m的一元二次方程,解之取其正值即可得出结论;②过点P作PM⊥AB于点M,作PN⊥x轴于点N,易证△DPM≌△EPN,利用全等三角形的性质及反比例函数图象上点的坐标特征,可得出关于m的方程,解之取其正值即可得出结论.【详解】解:(1)当x=1时,y==1,∴点D的坐标为(1,1),∴BD=AB﹣AD=m﹣1.故答案为:m﹣1.(2)①过点P作PF⊥AB于点E,则PF=m﹣1,如图1所示.∵△PBD的面积比矩形OABC面积多8,∴BD•PF﹣OA•OC=8,即(m﹣1)2﹣1m=8,整理,得:m2﹣2m=0,解得:m1=0(舍去),m2=2.②过点P作PM⊥AB于点M,作PN⊥x轴于点N,如图2所示.∵∠DOM+∠MPE=90°,∠MPE+∠EPN=90°,∴∠DPM=∠EPN.在△DPM和△EPN中,,∴△DPM≌△EPN(AAS),∴PM=PN.∵点P在反比例函数y=(x>0)的图象上,∴点P的坐标为(m,),∴PM=m﹣1,PN=,∴m﹣1=,解得:m1=2+2,m2=2﹣2(舍去).∴若点E恰好落在x轴上时,m的值为2+2.【点睛】本题考查反比例函数图象上点的坐标特征、三角形的面积、矩形的面积、全等三角形的判定与性质以及解一元二次方程,解题的关键是:(1)利用反比例函数图象上点的坐标特征,找出点D的坐标;(2)①由△PBD的面积比矩形OABC面积多8,找出关于m的一元二次方程;②利用全等三角形的性质及反比例函数图象上点的坐标特征,找出关于m的方程.22、证明见解析.【解析】

根据四边相等的四边形是菱形即可判断【详解】证明:四边形ABCD是平行四边形,,,,,,,,,,,四边形PBQD是菱形.【点睛】本题考查菱形的判定、直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)见解析;(1)见解析;(3)AD=1+【解析】

(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等;(1)根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AE,从而得证;(3)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【详解】(1)∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,∴△ACD≌△BFD(ASA)(1)由(1)可知:BF=AC∵AB=BC,BE⊥AC,∴AC=1AE,∴BF=1AE;(3)∵△ACD≌△BFD,∴DF=CD=,在Rt△CDF中,CF=,∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.24、EC=1【解析】

根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【详解】∵四边形ABCD为矩形,

∴DC=AB=8cm;∠B=∠C=90°;

由题意得:AF=AD=10,

设EF=DE=xcm,EC=8-x;

由勾股定理得:BF2=102-82,

∴BF=6,

∴CF=10-6=4;

在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论