版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省高阳县联考2024年八年级数学第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,已知点是线段的黄金分割点,且.若表示以为边的正方形面积,表示长为、宽为的矩形面积,则与的大小关系为()A. B. C. D.不能确定2.数据3,2,0,1,的方差等于()A.0 B.1 C.2 D.33.如图,在中,,若有一动点从出发,沿匀速运动,则的长度与时间之间的关系用图像表示大致是()A. B.C. D.4.我市城区测得上一周PM2.5的日均值(单位mg/m3)如下:50,40,75,50,57,40,50.则这组数据的众数是()A.40 B.50 C.57 D.755.如图,在△ABC中,AB=3,BC=4,AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.2 B.3 C.4 D.56.菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是()A.cm B.cm C.cm D.5cm7.下列各式从左到右的变形中,是因式分解的为().A. B.C. D.8.某种感冒病毒的直径为,用科学记数法表示为()A.米 B.米 C.米 D.米9.下列关于一元二次方程x2+bx+c=0的四个命题①当c=0,b≠0时,这个方程一定有两个不相等的实数根;②当c≠0时,若p是方程x2+bx+c=0的一个根,则是方程cx2+bx+1=0的一个根;③若c<0,则一定存在两个实数m<n,使得m2+mb+c<0<n2+nb+c;④若p,q是方程的两个实数根,则p﹣q=,其中是假命题的序号是()A.① B.② C.③ D.④10.如果是二次根式,那么x应满足的条件是()A.x≠2的实数 B.x<2的实数C.x>2的实数 D.x>0且x≠2的实数11.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1 B.0.17 C.0.33 D.0.412.下列各式:,,+y,,,其中分式共有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_____.14.计算−的结果为______15.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.16.如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.17.关于x的一元二次方程(2m-6)x2+x-m2+9=0的常数项为0,则实数m=_______18.医学研究发现一种新病毒的直径约为0.000043毫米,这个数0.000043用科学记数法表为______________.三、解答题(共78分)19.(8分)已知:四边形ABCD,E,F,G,H是各边的中点.(1)求证:四边形EFGH是平行四边形;(2)假如四边形ABCD是一个矩形,猜想四边形EFGH是什么图形?并证明你的猜想.20.(8分)如图,四边形是平行四边形,是边上一点.(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;(2)在(1)的条件下,若,,求四边形的周长.21.(8分)如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.22.(10分)如图,分别以的边向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,求证:(1);(2).23.(10分)如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.(1)请找出图中一对相似三角形,并证明;(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.24.(10分)如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.25.(12分)已知:如图,在菱形ABCD中,BE⊥AD于点E,延长AD至F,使DF=AE,连接CF.(1)判断四边形EBCF的形状,并证明;(2)若AF=9,CF=3,求CD的长.26.某市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2元收费.如果超过20吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.5元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出当每月用水量未超过20吨和超过20吨时,y与x之间的函数关系式;(2)若某用户5月份和6月份共用水45吨,且5月份的用水量不足20吨,两个月共交水费95元,求该用户5月份和6月份分别用水多少吨?
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据黄金分割的概念和正方形的性质知:BC2=AB•AC,变形后求解即可.【详解】∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AB•AC,∴S1=BC2=AB•AC=S2,故选B.【点睛】此题主要是考查了线段的黄金分割点的概念,根据概念表示出三条线段的关系,再结合正方形的面积进行分析计算是解题关键.2、C【解析】
先计算这5个数据的平均数,再根据方差公式计算即可.【详解】解:这5个数的平均数=(3+2+0+1-1)÷5=1,所以这组数据的方差=.故选:C.【点睛】本题考查的是方差的计算,属于基础题型,熟练掌握方差的计算公式是解题的关键.3、D【解析】
该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.【详解】解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.【点睛】本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.4、B【解析】
根据众数的定义求解即可.【详解】在50,40,75,50,57,40,50.这组数据中,50出现三次,次数最多,故众数是50.故选B.【点睛】此题考查一组数据的众数的确定方法,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5、B【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【详解】在中,∴,,,∴.∴为直角三角形,且.∵四边形是平行四边形,∴,.∴当取最小值时,线段最短,此时.∴是的中位线.∴.∴.故选B.【点睛】本题考查了勾股定理逆定理,平行四边形的性质,三角形的中位线以及垂线段最短.此题难度适中,注意掌握数形结合思想的应用.6、B【解析】如图所示:∵菱形的周长为20cm,∴菱形的边长为5cm,∵两邻角之比为1:2,∴较小角为60°,∴∠ABO=30°,AB=5cm,∵最长边为BD,BO=AB⋅cos∠ABO=5×=(cm),∴BD=2BO=(cm).故选B.7、C【解析】
根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A、是整式的乘法运算,故选项错误;
B、右边不是积的形式,故选项错误;
C、x2-1=(x+1)(x-1),正确;
D、等式不成立,故选项错误.
故选:C.【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.8、D【解析】
绝对值小于1的数可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】=m.故选D.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).9、D【解析】
根据一元二次方程根的判别式、方程的解的定义、二次函数与一元二次方程的关系、根与系数的关系判断即可.【详解】当c=0,b≠0时,△=b2>0,∴方程一定有两个不相等的实数根,①是真命题;∵p是方程x2+bx+c=0的一个根,∴p2+bp+c=0,∴1++=0,∴是方程cx2+bx+1=0的一个根,②是真命题;当c<0时,抛物线y=x2+bx+c开口向上,与y轴交于负半轴,则当﹣<m<0<n时,m2+mb+c<0<n2+nb+c,③是真命题;p+q=﹣b,pq=c,(p﹣q)2=(p+q)2﹣4pq=b2﹣4c,则|p﹣q|=,④是假命题,故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、C【解析】
根据二次根式的性质和分式的意义,被开方数大于等于2,分母不等于2,列不等式组求解.【详解】根据题意得:,解得:x>1.故选C.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥2)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于2.11、D【解析】
首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总人数30,即可得到仰卧起坐次数在25~30之间的频率.【详解】解:∵从频数分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.1.故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.12、B【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式.利用这点进行解题即可.【详解】在,,,,,中是分式的有:,,故B正确.【点睛】本题考查的是分式的定义,解题的关键是找到分母中含有字母的式子,同时一定要注意π不是字母.二、填空题(每题4分,共24分)13、【解析】过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.解:如图,过点D作DE⊥DP交BC的延长线于E,
∵∠ADC=∠ABC=90°,
∴四边形DPBE是矩形,
∵∠CDE+∠CDP=90°,∠ADC=90°,
∴∠ADP+∠CDP=90°,
∴∠ADP=∠CDE,
∵DP⊥AB,
∴∠APD=90°,
∴∠APD=∠E=90°,
在△ADP和△CDE中,∠ADP=∠CDE,∠APD=∠E,AD=CD,∴△ADP≌△CDE(AAS),
∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
∴矩形DPBE是正方形,
∴DP=.
故答案为3.“点睛”本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.14、-1【解析】试题分析:由分式的加减运算法则可得:==-1考点:分式的运算点评:此题是简单题,分式的加减运算,分母相同的,分子直接相加减;分母不用的要先通分,然后再计算.15、75°【解析】
连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD=AMB,求∠AMD,∠AMB,再根据三角形内角和可得.【详解】如图,连接BD,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°-∠BCE)=15°,∵∠BCM=∠BCD=45°,∴∠BMC=180°-(∠BCM+∠EBC)=120°∴∠AMB=180°-∠BMC=60°
∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°,∴∠ADM=180〬-∠DAC-∠AMD=180〬-45〬-60〬=75〬.故答案为75〬【点睛】本题考核知识点:正方形性质,等边三角形.解题关键点:运用正方形性质,等边三角形性质求角的度数.16、84°.【解析】
根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.【详解】解:∵DE垂直平分AB,∴DA=DB,∴∠DAB=∠B=32°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=32°,∴∠C=180°−32°×3=84°,故答案为84°.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17、-3【解析】分析:根据常数项为0,且二次项系数不为0列式求解即可.详解:由题意得,,解之得,m=-3.故答案为:-3.点睛:本题考查了一元二次方程的定义,本题的易错点是有些同学只考虑常数项为0这一条件,而忽视了二次项系数不为0这一隐含的条件.18、4.3×10-5【解析】解:0.000043=.故答案为.三、解答题(共78分)19、(1)见解析;(2)四边形EFGH是菱形,理由见解析【解析】
(1)根据三角形中位线定理可EF∥AC∥HG,HE∥BD∥GF,即可解答.(2)根据菱形是邻边相等的平行四边形,证明EF=AC=BD=EH,即可解答.【详解】(1)∵E,F,G,H是各边的中点,∴EF∥AC∥HG,HE∥BD∥GF,∴四边形EFGH是平行四边形;(2)四边形ABCD是一个矩形,四边形EFGH是菱形;∵四边形ABCD是矩形,∴AC=BD,∴EF=AC=BD=EH,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.【点睛】此题考查平行四边形的判定,菱形的判定,解题关键在于利用三角形中位线定理进行求证,掌握各判定定理.20、(1)见解析;(2)1.【解析】
(1)如图,连接,交于点,作直线交于点,点即为所求;(2)求出,即可解决问题.【详解】(1)如图,点即为所求;(2),,,,,,四边形是平行四边形,,,平行四边形的周长为1.【点睛】本题考查作图——复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题.21、(1)AG=1.5;AM+CM最小值为;(3)【解析】试题分析:(1)根据折叠的性质可得AG=GH,设AG的长度为x,在Rt△HGB中,利用勾股定理求出x的值;(2)作点A关于直线y=-1的对称点A',连接CA'与y=-1交于一点,这个就是所求的点,求出此时AM+CM的值;(3)求出G、H的坐标,然后设出解析式,代入求解即可得出解析式.试题解析:(1)由折叠的性质可得,AG=GH,AD=DH,GH⊥BD,∵AB=4,BC=3,∴BD=,设AG的长度为x,∴BG=4-x,HB=5-3=2,在Rt△BHG中,GH2+HB2=BG2,x2+4=(4-x)2,解得:x=1.5,即AG的长度为1.5;(2)如图所示:作点A关于直线y=-1的对称点A',连接CA'与y=-1交于M点,∵点B(5,1),∴A(1,1),C(5,4),A'(1,-3),AM+CM=A'C=,即AM+CM的最小值为;(3)∵点A(1,1),∴G(2.5,1),过点H作HE⊥AD于点E,HF⊥AB于点F,如图所示,∴△AEH∽△DAB,△HFB∽△DAB,∴,,即,,解得:EH=,HF=,则点H(,),设GH所在直线的解析式为y=kx+b,则,解得:,则解析式为:.【点睛】本题考查了一次函数的综合应用,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质以及利用待定系数法求函数解析式等知识,知识点较多,难度较大,解答本题的关键是掌握数形结合的思想.22、(1)证明见详解;(2)证明见详解.【解析】
(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.根据全等三角形的性质得到AE=MG,∠MGO=∠AEO,根据三角形的内角和得到∠MGA+∠GAE=180°,根据正方形的性质得到AG=AB,AE=AC,∠BAG=∠CAE=90°,根据全等三角形的性质得到AM=BC,等量代换即可得到结论;(2)根据全等三角形的性质得到∠M=∠EAO,∠M=∠ACB,等量代换得到∠EAO=∠ACB,求得∠AHC=90°,根据垂直的定义即可得到结论.【详解】解:(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.∵O为EG的中点,∴OG=OE,在△AOE与△MOG中,,∴△AOE≌△MOG(SAS),∴AE=MG,∠MGO=∠AEO,∴∠MGA+∠GAE=180°,∵四边形ABFG和四边形ACDE是正方形,∴AG=AB,AE=AC,∠BAG=∠CAE=90°,∴AC=GM,∠GAE+∠BAC=180°,∴∠BAC=∠AGM,在△AGM与△ABC中,,∴△AGM≌△ABC(SAS),∴AM=BC,∵AM=2AO,∴;(2)由(1)知,△AOE≌△MOG,△AGM≌△ABC,∴∠M=∠EAO,∠M=∠ACB,∴∠EAO=∠ACB,∵∠CAE=90°,∴∠OAE=∠CAH=90°,∴∠ACB+∠CAH=90°,∴∠AHC=90°,∴AH⊥BC.即.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.23、(1)△DPE∽△QDA,证明见解析;(2)DP=2或5【解析】
(1)由∠ADC=∠DEP=∠A=90可证明△ADQ∽△EPD;(2)若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,当△ADQ∽△EPQ时,设EQ=x,则EP=2x,则DE=2−x,由△ADQ∽△EPD可得,可求出x的值,则DP可求出;同理当△ADQ∽△EQP时,设EQ=2a,则EP=a,可得,可求出a的值,则DP可求.【详解】(1)△ADQ∽△EPD,证明如下:∵PE⊥DQ,∴∠DEP=∠A=90,∵∠ADC=90,∴∠ADQ+∠EDP=90,∠EDP+∠DPE=90,∴∠ADQ=∠DPE,∴△ADQ∽△EPD;(2)∵AB=4,点Q为AB的中点,∴AQ=BQ=2,∴DQ=,∵∠PEQ=∠A=90,∴若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,①当△ADQ∽△EPQ时,,设EQ=x,则EP=2x,则DE=2−x,由(1)知△ADQ∽△EPD,∴,∴,∴x=∴DP==5;②当△ADQ∽△EQP时,设EQ=2a,则EP=a,同理可得,∴a=,DP=.综合以上可得DP长为2或5,使得以点P,E,Q为顶点的三角形与△ADQ相似.【点睛】本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.24、(1)y=;(2)点F的坐标为(2,4);(3)∠AOF=∠EOC,理由见解析;(4)P的坐标是(,0)或(-5,0)或(,0)或(5,0)【解析】
(1)设反比例函数的解析式为y=,把点E(3,4)代入即可求出k的值,进而得出结论;(2)由正方形AOCB的边长为4,故可知点D的横坐标为4,点F的纵坐标为4,由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(4,3),由点D在直线上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标;(3)在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG,设直线EG的解析式为y=mx+n,把E(3,4),G(4,2)代入即可求出直线EG的解析式,故可得出H点的坐标,在Rt△AOF中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE,即OG是等腰三角形底边EF上的中线,所以OG是等腰三角形顶角的平分线,由此即可得出结论;(4)分△PDQ的三个角分别是直角,三种情况进行讨论,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,即可构造全等的直角三角形,设出P的坐标,根据点在图象上,则一定满足函数的解析式即可求解,【详解】解:(1)设反比例函数的解析式y=,∵反比例函数的图象过点E(3,4),∴4=,即k=12,∴反比例函数的解析式y=;(2)∵正方形AOCB的边长为4,∴点D的横坐标为4,点F的纵坐标为4,∵点D在反比例函数的图象上,∴点D的纵坐标为3,即D(4,3),∵点D在直线y=﹣x+b上,∴3=﹣×4+b,解得:b=5,∴直线DF为y=﹣x+5,将y=4代入y=﹣x+5,得4=﹣x+5,解得:x=2,∴点F的坐标为(2,4),(3)∠AOF=∠EOC,理由为:证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,,∴△OAF≌△OCG(SAS),∴∠AOF=∠COG,,∴△EGB≌△HGC(ASA),∴EG=HG,设直线EG:y=mx+n,∵E(3,4),G(4,2),∴,解得,∴直线EG:y=﹣2x+10,令y=﹣2x+10=0,得x=5,∴H(5,0),OH=5,在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5,∴OH=OE,∴OG是等腰三角形底边EH上的中线,∴OG是等腰三角形顶角的平分线,∴∠EOG=∠GOH,∴∠EOG=∠GOC=∠AOF,即∠AOF=∠EOC;(4)当Q在D的右侧(如图1),且∠PDQ=90°时,作DK⊥x轴,作QL⊥DK,于点L,则△DPK≌△QDK,设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),把(7,-1+a)代入y=得:7(-1+a)=12,解得:a=,则P的坐标是(,0);当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PDK,则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,则Q的坐标是(1,7-b),代入y=得:b=-5,则P的坐标是(-5,0);当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,则△QDL≌△PQK,则DK=DL=3,设Q的横坐标是c,则纵坐标是,则QK=QL=,又∵QL=c-4,∴c-4=,解得:c=-2(舍去)或6,则PK=DL=DR-LR=DR-QK=3-=1,∴OP=OK-PK=6-1=5,则P的坐标是(5,0);当Q在D的左侧(如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题四曲线运动万有引力与航天第4讲万有引力与航天练习含答案
- 建筑工地用水泥采购
- 医药产品采购合同示例
- 作文主题05 多彩信件-四年级语文作文主题训练
- 九年级化学下册 第六章 金属 6.1 金属的物理性质教案 (新版)粤教版
- 2024秋七年级英语上册 Unit 7 Days and Months Lesson 42 Happy Holodays教案 (新版)冀教版
- 2024秋九年级化学上册 4.1 爱护水资源教案 (新版)新人教版
- 2024高中历史 第七单元 复杂多样的当代世界 第24课 两极对峙格局的形成教案 岳麓版必修1
- 2023六年级语文下册 第六单元 难忘小学生活-阅读交流与指导配套教案 新人教版
- 2023三年级语文下册 第二单元 6 陶罐和铁罐配套教案 新人教版
- 光与色的世界(课件)
- 马凳筋施工专项方案(12页)
- YSJ 007-1990 有色金属选矿厂 试验室、化验室及技术检查站工艺设计标准(试行)(附条文说明)
- 李铁安:高品质课堂的塑造
- 岩石力学基本教程 教学PPT 第6章 地应力
- 2019年航测遥感试卷及答案82分(错题给出参考答案)
- 义务教育《化学》课程标准(2022年版)
- 纵膈肿瘤ppt模板
- 钢结构焊接施工记录含内容
- 治安保卫重点要害部位审定表
- 小学档案资料目录
评论
0/150
提交评论