版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省海安市十学校2024年数学八年级下册期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若点在第四象限,则的取值范围是()A. B. C. D.2.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<13.如图,在中,点是对角线,的交点,点是边的中点,且,则的长为()A. B. C. D.4.若bk>0,则直线y=kx-b一定通过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限5.下列命题:①直角三角形两锐角互余;②全等三角形的对应角相等;③两直线平行,同位角相等:④对角线互相平分的四边形是平行四边形.其中逆命题是真命题的个数是()A.1 B.2 C.3 D.46.下列各点中,与点(-3,4)在同一个反比例函数图像上的点是A.(2,-3) B.(3,4) C.(2,-6) D.(-3,-4)7.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm8.如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长等于()A.18 B.15 C.13 D.129.在边长为5的正方形ABCD中,以A为一个顶点,另外两个顶点在正方形ABCD的边上作等腰三角形,且含边长为4的所有大小不同的等腰三角形的个数为()A.6 B.5 C.4 D.310.下列几何图形是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为.12.某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.13.小明在计算内角和时,不小心漏掉了一个内角,其和为1160,则漏掉的那个内角的度数是_____________.14.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.15.如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.16.如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是_________.17.如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.18.分解因式:____________三、解答题(共66分)19.(10分)如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转(1)如图2,当时,求证:;(2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.20.(6分)如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形21.(6分)如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:≌.(2)若DEB=90,求证四边形DEBF是矩形.22.(8分)某校要从甲、乙两名同学中挑选一人参加创新能力大赛,在最近的五次选拔测试中,他俩的成绩分别如下表,请根据表中数据解答下列问题:第1次第2次第3次第4次第5次平均分众数中位数方差甲60分75分100分90分75分80分75分75分190乙70分90分100分80分80分80分80分(1)把表格补充完整:(2)在这五次测试中,成绩比较稳定的同学是多少;若将80分以上(含80分)的成绩视为优秀,则甲、乙两名同学在这五次测试中的优秀率分别是多少;(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.23.(8分)如图,将等边绕点顺时针旋转得到,的平分线交于点,连接、.(1)求度数;(2)求证:.24.(8分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.25.(10分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:(1)根据上图填写下表:平均数中位数众数八(1)班8585八(2)班8580(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.26.(10分)一次函数的图像经过,两点.(1)求的值;(2)判断点是否在该函数的图像上.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据第四象限内点的坐标特征为(+,-)列不等式求解即可.【详解】由题意得2m-1<0,∴.故选D.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.2、B【解析】
直接根据函数的图象与y轴的交点为(0,1)进行解答即可:【详解】解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.3、C【解析】
先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【详解】解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=10,,故选:C.【点睛】本题考查了平行四边形的性质及中位线定理的知识,解答本题的关键是根据平行四边形的性质判断出点O是BD中点,得出OE是△DBC的中位线.4、D【解析】
根据题意讨论k和b的正负情况,然后可得出直线y=kx-b一定通过哪两个象限.【详解】解:由bk>0,知,①b>0,k>0;②b<0,k<0;①b>0,k>0时,直线经过第一、三、四象限,②b<0,k<0时,直线经过第一、二、四象限.综上可得,函数一定经过一、四象限.故选:D.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5、C【解析】
首先写出各个命题的逆命题,然后进行判断即可.【详解】①直角三角形两锐角互余逆命题是如果三角形中有两个角互余,那么这个三角形是直角三角形,是真命题;②全等三角形的对应角相等逆命题是对应角相等的两个三角形全等,是假命题;③两直线平行,同位角相等逆命题是同位角相等,两直线平行,是真命题:④对角线互相平分的四边形是平行四边形逆命题是如果四边形是平行四边形,那么它的对角线互相平分,是真命题.故选C.【点睛】本题考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.6、C【解析】
先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.【详解】∵反比例函数y=kx过点(−3,4),∴k=(−3)×4=−12,A.∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;B.∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;C.∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;D.∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。故选C.【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值7、A【解析】由题意可知∠DFE=∠CDF=∠C=90°,DC=DF,∴四边形ECDF是正方形,∴DC=EC=BC-BE,∵四边形ABCD是矩形,∴BC=AD=10,∴DC=10-6=4(cm).故选A.8、C【解析】
先根据线段垂直平分线的性质得出,故可得出的周长,由此即可得出结论.【详解】解:在中,,,是线段的垂直平分线,,的周长.故选:C.【点睛】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.9、B【解析】
①以A为圆心,以4为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取2个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取4个单位,以截取的点为圆心,以4个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取2个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取4个单位,再作着个线段的垂直平分线交CD一点,连接即可,⑥以A为端点在AD上截取4个单位,再作这条线段的垂直平分线交BC一点,连接即可(和⑤大小一样);⑦以A为端点在AD上截取4个单位,以截取的点为圆心,以4个单位为半径画弧,交CD一个点,连接即可(和③大小一样).【详解】解:满足条件的所有图形如图所示:共5个.
故选:B.【点睛】本题考查了正方形的性质,等腰三角形的判定,解题的关键是掌握等腰三角形的判定方法.10、D【解析】
根据中心对称图形的定义判断即可.【详解】A、图形不是中心对称图形;B、图形不是中心对称图形;C、图形不是中心对称图形;D、图形是中心对称图形;故选D.【点睛】本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,二、填空题(每小题3分,共24分)11、12或4【解析】试题分析:当图形处于同一个象限时,则k=8+4=12;当图形不在同一个象限时,则k=8-4=4.考点:反比例函数的性质12、144(1﹣x)2=1.【解析】
设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.【详解】设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,根据题意,得144(1﹣x)2=1.故答案为144(1﹣x)2=1.【点睛】本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.13、100°【解析】
根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1160,可以解方程(n-2)•180°≥1160,由于每一个内角应大于0°而小于180度,则多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【详解】解:设多边形的边数是n.
依题意有(n-2)•180°≥1160°,解得:则多边形的边数n=9;
九边形的内角和是(9-2)•180=1260度;
则未计算的内角的大小为1260-1160°=100°.
故答案为:100°【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.14、9【解析】
用总频数减去各组已知频数可得.【详解】第三组频数是40-10-8-7-6=9故答案为:9【点睛】考核知识点:频数.理解频数的定义是关键.数据的个数叫频数.15、1.【解析】
根据正方形的性质可得出AB=AD、∠BAD=90°,由AB=AG、∠AGB=70°利用等腰三角形的性质及三角形内角和定理可求出∠BAG的度数,由∠DAG=90°-∠BAG可求出∠DAG的度数,由等腰三角形的性质结合三角形内角和定理可求出∠AGD的度数,再由∠BGD=∠AGB+∠AGD可求出∠BGD的度数.【详解】∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°.∵AB=AG,∠AGB=70°,∴∠BAG=180°﹣70°﹣70°=40°,∴∠DAG=90°﹣∠BAG=50°,∴∠AGD=(180°﹣∠DAG)=65°,∴∠BGD=∠AGB+∠AGD=1°.故答案为:1.【点睛】本题考查了正方形的性质、等腰三角形的性质以及三角形内角和定理,根据等腰三角形的性质结合三角形内角和定理求出∠AGD的度数是解题的关键.16、1【解析】
根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.【详解】∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=1,故答案为:1.【点睛】此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.17、40°【解析】
由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.【详解】解:绕点逆时针旋转到△的位置【点睛】本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.18、a(x+5)(x-5)【解析】
先公因式a,然后再利用平方差公式进行分解即可.【详解】故答案为a(x+5)(x-5).三、解答题(共66分)19、(1)见详解;(2);.【解析】
(1)由正方形的性质得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可证得△DAG≌△BAE;(2)①由AB=2,AE=1,由勾股定理得AF=AE=,易证△ABF是等腰三角形,由AE=EF,则直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,则OE=OA=,由勾股定理得OB=,由cos∠ABO=,cos∠ABH=,求得BH=,由勾股定理得AH==,则DH=AD−AH=2−,由∠DHP=∠BHA,∠BAH=∠DPH=90°,证得△BAH∽△DPH,得出,即可求得DP;②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,则点P的运动轨迹为以BD为直径的,由正方形的性质得出BD=AB=2,由正方形AEFG绕点A按逆时针方向旋转了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三点共线,同理D、F、G三点共线,则P与F重合,得出∠ABP=30°,则所对的圆心角为60°,由弧长公式即可得出结果.【详解】解答:(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=2,∴AE=1,由勾股定理得,AF=AE=,∵BF=BC=2,∴AB=BF=2,∴△ABF是等腰三角形,∵AE=EF,∴直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,如图3所示:则OE=OA=,∴OB=,∵cos∠ABO=,cos∠ABH=,∴BH=,AH==,∴DH=AD−AH=2−,∵∠DHP=∠BHA,∠BAH=∠DPH=90°,∴△BAH∽△DPH,∴,即∴DP=;②∵△DAG≌△BAE,∴∠ABE=∠ADG,∵∠BPD=∠BAD=90°,∴点P的运动轨迹为以BD为直径的,BD=AB=2,∵正方形AEFG绕点A按逆时针方向旋转了60°,∴∠BAE=60°,∵AB=2AE,∴∠BEA=90°,∠ABE=30°,∴B、E、F三点共线,同理D、F、G三点共线,∴P与F重合,∴∠ABP=30°,∴所对的圆心角为60°,∴旋转过程中点P运动的路线长为:.【点睛】本题是四边形综合题,主要考查了正方形的性质、旋转的性质、等腰三角形的性质、等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、圆周角定理、勾股定理、三角函数等知识,综合性强,难度大,知识面广.20、见解析【解析】
要证明四边形BFDE是平行四边形,可以证四边形BFDE有两组对边分别相等,即证明BF=DE,EB=DF即可得到.【详解】证明:∵ABCD是平行四边形,∴AB=DC,AB∥DC,∴∠BAF=∠DCE,又∵对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF,所以在△ABF和△DCE中,,∴△ABF≌△CDE(SAS),∴BF=DE,同理可证:△ADF≌△CBE(SAS),∴DF=BE,∴四边形BFDE是平行四边形.【点睛】本题主要考查平行四边形的判定(两组对边分别平行,两组对边分别相等,有一组对边平行且相等),掌握判定的方法是解题的关键,在解题过程中,需要灵活运用所学知识,掌握三角形全等的判定或者两直线平行的判定对证明这道题目有着至关重要的作用.21、(1)利用SAS证明;(2)证明见解析.【解析】试题分析:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.试题解析:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形ABCD是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.故答案为(1)利用SAS证明;(2)证明见解析.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.22、(1)84,104;(2)乙;40%,80%;(3)我认为选乙参加比较合适.【解析】
(1)根据乙五次成绩,先求平均数,再求方差即可,(2)方差小代表成绩稳定;优秀率表示超过80分次数的多少,次数越多越优秀,(3)选择成绩高且稳定的人去参加即可.【详解】(1)乙==84,S2乙=[(70-84)2+(90-84)2+(100-84)2+(80-84)2+(80-84)2]=104(2)∵甲的方差>乙的方差∴成绩比较稳定的同学是乙,甲的优秀率=×100%=40%乙的优秀率=×100%=80%(3)我认为选乙参加比较合适,因为乙的成绩平均分和优秀率都比甲高,且比甲稳定,因此选乙参加比赛比较合适.【点睛】本题考查了简单的数据分析,包括求平均数,方差,优秀率,属于简单题,熟悉计算方法和理解现实含义是解题关键.23、(1);(2)证明见解析.【解析】
(1)由等边三角形的性质可得,,由旋转的性质可得,,由等腰三角形的性质可求解;(2)由“”可证,可得,即可证.【详解】解:(1)是等边三角形,等边绕点顺时针旋转得到,,,(2)和是等边三角形,平分,,,【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.24、(1)见解析;(2);(3)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;
(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古典音乐解析
- 全新景观规划设计委托合同(2024年版)2篇
- 燃烧锅炉技术升级协议(2024)2篇
- 2024年版修车铺租赁协议3篇
- 2024年:基于自动化技术的智能家居系统研究
- 财务费用培训课件
- 住宅装修设计与施工三方协议(2024年修订版)3篇
- 高一计算机试题(有答案)
- 2024年雕塑家教学服务协议
- 2024年品牌陈列协议2篇
- 三级入场教育培训
- 电子商务运营流程详解作业指导书
- 心肺复苏培训课件
- 小学劳动教育一年级下册第二单元第3课《削果皮》课件
- 担任学生干部证明
- 绿化恢复合同范本
- 2024年秋一年级语文上册第三单元 作业设计(含答案)
- 经济法学-计分作业一(第1-4章权重25%)-国开-参考资料
- 2024年自考《14269数字影像设计与制作》考试复习题库(含答案)
- 2024年新版全员消防安全知识培训
- 教师资格考试小学数学面试试题及解答参考(2024年)
评论
0/150
提交评论