湖南省长沙市雅实、北雅、长雅三校2024年数学八年级下册期末预测试题含解析_第1页
湖南省长沙市雅实、北雅、长雅三校2024年数学八年级下册期末预测试题含解析_第2页
湖南省长沙市雅实、北雅、长雅三校2024年数学八年级下册期末预测试题含解析_第3页
湖南省长沙市雅实、北雅、长雅三校2024年数学八年级下册期末预测试题含解析_第4页
湖南省长沙市雅实、北雅、长雅三校2024年数学八年级下册期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市雅实、北雅、长雅三校2024年数学八年级下册期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.向一容器内均匀注水,最后把容器注满在注水过程中,容器的水面高度与时间的关系如图所示,图中PQ为一线段,则这个容器是(

)A. B. C. D.2.下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm23.估算的运算结果应在()A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间4.如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A.2 B.4 C.5 D.无数5.点关于轴对称的点的坐标是()A. B. C. D.6.已知正比例函数y=(m﹣8)x的图象过第二、四象限,则m的取值范围是()A.m≥8 B.m>8 C.m≤8 D.m<87.为加快5G网络建设,某移动通信公司在山顶上建了一座5G信号通信塔AB,山高BE=100米(A,B,E在同一直线上),点C与点D分别在E的两侧(C,E,D在同一直线上),BE⊥CD,CD之间的距离1000米,点D处测得通信塔顶A的仰角是30°,点C处测得通信塔顶A的仰角是45°(如图),则通信塔AB的高度约为()米.(参考数据:,)A.350 B.250 C.200 D.1508.正方形具有而菱形不一定具有的性质是()A.对角线相等 B.对角线互相垂直平分C.四条边相等 D.对角线平分一组对角9.若点P(2m-1,1)在第二象限,则m的取值范围是(

)A.m< B.m> C.m≤ D.m≥10.如图,将边长为的正方形ABCD绕点A逆时针方向旋转后得到正方形,则图中阴影部分的面积为A. B. C. D.11.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=AB;②图中与△EGD

全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④

S四边形ODGF=

S△ABF.其中正确的结论是()A.①③ B.①③④ C.①②③ D.②②④12.下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次二、填空题(每题4分,共24分)13.方程的解是__________.14.已知在△ABC中,∠ABC和∠ACB的角平分线交于O,且∠ABC的角平分线与∠ACB的外角平分线交于P,∠OPC和∠OCP角平分线交于H,∠H=117.5°,则∠A=________15.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,−2,+1,0,+2,−3,0,+1,则这组数据的方差是________.16.己知某汽车油箱中的剩余油量y(升)与该汽车行驶里程数x(千米)是一次函数关系,当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,该汽车已行驶了____千米17.若的三边长分别是6、8、10,则最长边上的中线长为______.18.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是.三、解答题(共78分)19.(8分)已知:如图,AM是△ABC的中线,D是线段AM的中点,AM=AC,AE∥BC.求证:四边形EBCA是等腰梯形.20.(8分)已知.将他们组合成(A﹣B)÷C或A﹣B÷C的形式,请你从中任选一种进行计算,先化简,再求值,其中x=1.21.(8分)如图是某汽车行驶的路程s(km)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)求汽车在前9分钟内的平均速度.(2)汽车在中途停留的时间.(3)求该汽车行驶30千米的时间.22.(10分)如图,一次函数的图象与反比例函数的图象交于点和点.(1)求一次函数和反比例函数的解析式;(2)直接写出不等式的解集.23.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.24.(10分)先化简,再求值:,其中x=25.(12分)某公司与销售人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售一件产品,奖励工资10元.设某销售员销售产品x件,他应得工资记为y元.(1)求y与x的函数关系式.(2)该销售员的工资为4100元,他这个月销售了多少件产品?(3)要使每月工资超过4500元,该月的销售量应当超过多少件?26.如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.

参考答案一、选择题(每题4分,共48分)1、C【解析】

观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案解答即可.【详解】根据图象,水面高度增加的先逐渐变快,再匀速增加;故容器从下到上,应逐渐变小,最后均匀.故选C.【点睛】此题考查函数的图象,解题关键在于结合实际运用函数的图像.2、D【解析】

根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.【详解】根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F的面积之和为3个G的面积.∵M的面积是61=36cm1,∴A、B、C、D、E、F的面积之和为36×3=108cm1.故选D.【点睛】考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.3、C【解析】

先估算出的大小,然后求得的大小即可.【详解】解:9<15<16,3<<4,5<<6,故选C.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.4、C【解析】分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.详解:如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QB∴∠QBH=75°,∠HQB=180-75°-75°=30°,故∠OQB=60°+30°=90°,不能再添加了.故选C.点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答.5、A【解析】

根据关于y轴对称的点纵坐标相同,横坐标互为相反数即可得解.【详解】解:点关于轴对称的点的坐标是.故选A.【点睛】本题主要考查关于坐标轴对称的点的坐标,关于x轴对称的点是横坐标相同,纵坐标互为相反数;关于y轴对称的点是纵坐标相同,横坐标互为相反数.6、D【解析】

根据正比例函数的性质,首先根据图象的象限来判断m﹣1的大小,进而计算m的范围.【详解】解:∵正比例函数y=(m﹣1)x的图象过第二、四象限,∴m﹣1<0,解得:m<1.故选:D.【点睛】本题主要考查正比例函数的性质,根据一次函数的一次项系数的正负确定图象所在的象限.7、B【解析】

设AB=x米,则AE=(100+x)米,然后利用特殊角的三角函数值表示出DE,EC,最后利用CD=DE+EC=1000即可求出x的值.【详解】设AB=x米,则AE=(100+x)米,在Rt△AED中,∵,则DE==(100+x),在Rt△AEC中,∠C=45°,∴CE=AE=100+x,由题意得,(100+x)+(100+x)=1000,解得x=250,即AB=250米,故选:B.【点睛】本题主要考查解直角三角形,掌握特殊角的三角函数值是解题的关键.8、A【解析】

根据正方形和菱形的性质可以判断各个选项是否正确.【详解】解:正方形的对角线相等,菱形的对角线不相等,故A符合题意;

正方形和菱形的对角线都互相垂直平分,故B不符合题意;

正方形和菱形的四条边都相等,故C不符合题意;正方形和菱形的对角线都平分一组对角,故D不符合题意,

故选:A.【点睛】本题考查正方形和菱形的性质,解答本题的关键是熟练掌握基本性质.9、A【解析】

根据坐标与象限的关系,可列出不等式,解得m的取值范围.【详解】P点在第二象限,即2m-1<0,解得m<.故答案为:A【点睛】考查了解一元一次不等式,以及点的坐标,弄清第二象限点坐标特征是解本题的关键.10、D【解析】

设BC、C'D'相交于点M,连结AM,根据HL即可证明△AD'M≌△ABM,可得到∠MAB=30°,然后可求得MB的长,从而可求得△ABM的面积,最后利用正方形的面积减去△AD'M和△ABM的面积进行计算即可.【详解】设BC、相交于点M,连结AM,由旋转的性质可知:,在Rt和Rt△ABM中,≌(HL),,,,,又,,,又,,故选D.【点睛】本题考查旋转的性质以及全等三角形的判定与性质、特殊锐角三角函数值的应用,熟练掌握相关性质与定理、证得≌是解本题的关键.11、A【解析】

由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,③正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;④不正确;即可得出结果.【详解】解:四边形ABCD是菱形,在△ABG和△DEG中,∴△ABG≌△DEG(AAS),∴.AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB//CE,AB=DE,∴四边形ABDE是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,③正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,∴△ABG≌△DCO∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,则②不正确。∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;④不正确;故答案为:A.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.12、B【解析】

根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、抛掷一枚质地均匀的骰子,正面向上的点数是6是随机事件;B、抛掷一枚质地均匀的骰子,正面向上的点数大于6是不可能事件;C、抛一枚质地均匀的骰子,正面向上的点数小于6是随机事件;D、抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、【解析】

先移项,然后开平方,再开立方即可得出答案.【详解】,,故答案为:.【点睛】本题主要考查解方程,掌握开平方和开立方的法则是解题的关键.14、70°【解析】

根据三角形内角和定理,可得∠HCP+∠HPC=62.5°,由角平分线的性质,得∠OCP+∠OPC=125°,由三角形外角性质,得到∠BOC的度数,然后∠OBC+OCB=55°,然后可以计算得到∠A的度数.【详解】解:∵∠H=117.5°,∴∠HCP+∠HPC=180°-117.5°=62.5°,∵CH平分∠OCP,PH平分∠OPC,∴∠OCP+∠OPC=2(∠HCP+∠HPC)=125°,∴∠BOC=125°,∴∠OBC+∠OCB=180°-125°=55°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC+∠ACB=2(∠OBC+OCB)=110°,∴∠A=180°-110°=70°;故答案为:70°.【点睛】本题考查了角平分线的性质,三角形的内角和定理,三角形的外角性质,解题的关键是灵活运用性质求出有关的角度.15、2.1【解析】

解:平均数=(1-2+1+0+2-3+0+1)÷8=0;方差==2.1,故答案为2.1.考点:方差;正数和负数.16、500【解析】

根据当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,根据题意列出式子进行计算即可.【详解】(250-200)÷(126-120)×(120-90)+250=500,故答案为:500.【点睛】此题考查有理数的混合运算,解题关键在于根据题意列出式子.17、1【解析】

根据勾股定理的逆定理得到这个三角形是直角三角形,根据直角三角形斜边上中线的性质计算即可.【详解】解:,,,这个三角形是直角三角形,斜边长为10,最长边上的中线长为1,故答案为:1.【点睛】本题考查的是直角三角形的性质、勾股定理的逆定理的应用,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.18、.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好2名女生得到电影票的情况,再利用概率公式求解即可求得答案.解:画树状图得:∵共有12种等可能的结果,恰好2名女生得到电影票的有2种情况,∴恰好2名女生得到电影票的概率是:=.故答案为:.三、解答题(共78分)19、见解析.【解析】

根据三角形判定定理先证明三角形ADE与三角形MDC全等,得出AE=MC=MB,得出四边形AEBM是平行四边形,最后可证明四边形EBCA是等腰梯形.证明:∵AE∥BC,∴∠AED=∠MCD,∵D是线段AM的中点,∴AD=MD,在△ADE和△MDC中,,∴△ADE≌△MDC(AAS),∴AE=MC,∵AM是△ABC的中线,∴MB=MC,∴AE=MB,∵AE∥MB,∴四边形AEBM是平行四边形,∴BE=AM,∵AM=AC,∴BE=AC,∵AE∥BC,BE与AC不平行,∴四边形EBCA是梯形,∴梯形EBCA是等腰梯形.【点睛】本题考查学生对三角形判定定理的运用熟练程度,通过先运用三角形全等判定理找出AE=MC=MB是解决此题的关键.20、答案不唯一,如选(A﹣B)÷C,化简得,【解析】

首先选出组合,进而代入,根据分式运算顺序进而化简,求出即可.【详解】选(A﹣B)÷C=(=[]当x=1时,原式.【点睛】本题考查了分式的化简求值,正确运用分式基本性质是解题的关键.21、(1)(2)7(3)25分钟【解析】

试题分析:(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.解:(1)平均速度=km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,S与t的函数关系式为S=2t﹣20,当S=30时,30=2t﹣20,解得t=25,即该汽车行驶30千米的时间为25分钟.考点:一次函数的应用.22、(1),;(2)或.【解析】

(1)将点A的坐标代入反比例函数的解析式可求得m的值,从而得到反比例函数的解析式,然后将点B的坐标代入可求得n的值,接下来,利用待定系数法求得直线AB的解析式即可;

(2)不等式的解集为直线y=kx+b位于反比例函数上方部分时,自变量x的取值范围;【详解】解:(1)∵点在反比例函数上,∴,∴反比例函数解析式为:.∵点在上,∴.∴.将点,代入,得.解得.直线的解析式为:.(2)直线y=kx+b位于反比例函数上方部分时,x的取值范围是或.∴不等式的解集为或.【点睛】本题主要考查的是反比例函数的综合应用,数形结合是解答问题(2)的关键23、迁移应用:①证明见解析;②CD=AD+BD;拓展延伸:①证明见解析;②3.【解析】

迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;

②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;

拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;

②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【详解】迁移应用:①证明:如图②

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

∴△DAB≌△EAC,②解:结论:CD=AD+BD.

理由:如图2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD•cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD.

拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.

∵四边形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等边三角形,

∴BA=BD=BC,

∵E、C关于BM对称,

∴BC=BE=BD=BA,FE=FC,

∴A、D、E、C四点共圆,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,

∴AH=HE=2.5,FH=4.5,

在Rt△BHF中,∵∠B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论