版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年重庆第三十中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.不等式的解集为()A.{x|x≥3或﹣1≤x≤1} B.{x|x≥3或﹣1<x≤1}C.{x|x≤﹣3或﹣1≤x≤1} D.{x|x≤﹣3或﹣1<x≤1}参考答案:D考点:其他不等式的解法.专题:不等式的解法及应用.分析:不等式即≤0,再用穿根法求得它的解集.解答:解:不等式≤0,即≤0,用穿根法求得它的解集为{x|x≤﹣3或﹣1<x≤1},故选:D.点评:本题主要考查用穿根法求分式不等式的解集,体现了转化、数形结合的数学思想,属于基础题.2.已知函数,函数,若存在,使得成立,则实数的取值范围是A.
B. C.
D.参考答案:D略3.在中,若依次成等差数列,则(
)
A.依次成等差数列 B.依次成等比数列
C.依次成等差数列 D.依次成等比数列参考答案:C4.复数z=﹣4i+3的虚部是(
) A.﹣4i B.3i C.3 D.﹣4参考答案:D考点:复数的基本概念.专题:数系的扩充和复数.分析:利用复数的基本概念:复数a+bi的实部为a,虚部为b,解得.解答: 解:复数z=﹣4i+3=3+(﹣4)i的虚部是﹣4;故选D.点评:本题考查了复数的基本概念;复数a+bi的实部为a,虚部为b.5.已知某四棱锥的三视图如图所示,正视图和侧视图是全等的等腰直角三角形,则该四棱锥的最长棱与底面所成角的正切值为(
)A. B. C. D.参考答案:C【分析】由三视图可得:该几何体是正方体中的一个四棱锥,该四棱锥中最长的棱为,即可得它与底面所成角为,利用角的正切定义计算即可得解。【详解】由三视图可得:该几何体是正方体中的一个四棱锥,如下图中的四棱锥设正方体的边长为1,该四棱锥中最长的棱为,它与底面所成角为,又,所以故选:C【点睛】本题主要考查了三视图还原几何体,还考查了线面角知识,考查空间思维能力及计算能力,属于较易题。6.设命题,,则为(
)A., B.,C., D.,参考答案:B本题主要考查命题及其关系,全称量词与存在量词.因为全称量词的否定是存在量词,的否定是.所以:,故本题正确答案为B.7.将正整数排成下表:……则在表中数字2013出现在(
)A.第44行第78列
B.第45行第78列C.第44行第77列
D.第45行第77列参考答案:D8.已知,,,(
)(A)
(B)
(C)
(D)参考答案:C略9.正数x,y满足2x+y=1,则的最小值为(
)A.3
B.2
C.
D.参考答案:C略10.“x=1”是“x2=1”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】先判断由x=1能否推出“x2=1”,再判断由“x2=1”成立能否推出“x=1“成立,利用充要条件的定义判断出结论.【解答】解:当x=1成立则“x2=1”一定成立反之,当“x2=1”成立则x=±1即x=1不一定成立∴“x=1”是“x2=1”的充分不必要条件故选A.二、填空题:本大题共7小题,每小题4分,共28分11.圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是
cm.参考答案:412.已知函数,则的值域是
参考答案:.
略13.若展开式中的常数项为60,则实数a的值为
▲
.参考答案:4展开式的常数项是.
14.在正三棱柱中,.若二面角的大小为,则点
到平面的距离
.参考答案:
15.双曲线的渐近线方程为.参考答案:y=±x【考点】双曲线的简单性质.【分析】根据题意,由双曲线的标准方程分析可得其焦点在y轴上,可以求出a、b的值,进而由双曲线的渐近线方程分析可得答案.【解答】解:根据题意,双曲线的标准方程为,则其焦点在y轴上,且a==3,b==2,故其渐近线方程y=±x;故答案为:y=±x.16.设,则的值为
.参考答案:-2略17.以原点为顶点,坐标轴为对称轴,并且经过点(-2,-4)的抛物线方程是
。参考答案:y2=-8x或x2=-y
略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos=,bccosA=3.(Ⅰ)求△ABC的面积;(Ⅱ)若,求a的值.参考答案:【考点】余弦定理;正弦定理.【分析】(Ⅰ)由已知利用二倍角的余弦函数公式可求cosA,进而利用同角三角函数基本关系式可求sinA的值,结合bccosA=3,可求bc=5,进而利用三角形面积公式即可计算得解.(Ⅱ)由bc=5,又b+c=,由余弦定理即可解得a的值.【解答】(本小题满分12分)解:(Ⅰ)∵cos=,∴cosA=2cos2﹣1=,sinA=,又bccosA=3,∴bc=5,∴S△ABC=bcsinA=2.…(6分)(Ⅱ)由(Ⅰ)得bc=5,又b+c=,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA=16,∴a=4.…(12分)【点评】本题主要考查了二倍角的余弦函数公式,同角三角函数基本关系式,三角形面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.19.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.参考答案:【考点】古典概型及其概率计算公式;频率分布直方图;茎叶图.【专题】概率与统计.【分析】(Ⅰ)先由频率分布直方图求出[50,60)的频率,结合茎叶图中得分在[50,60)的人数即可求得本次考试的总人数;(Ⅱ)根据茎叶图的数据,利用(Ⅰ)中的总人数减去[50,80)外的人数,即可得到[50,80)内的人数,从而可计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)用列举法列举出所有的基本事件,找出符合题意得基本事件个数,利用古典概型概率计算公式即可求出结果.【解答】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.【点评】本题考查了茎叶图和频率分布直方图的性质,以及古典概型概率计算公式的应用,此题是基础题.20.如图,圆锥中,为底面圆的两条直径,,且⊥,,为的中点.(Ⅰ)求证:∥平面;(Ⅱ)求圆锥的表面积;(Ⅲ)求异面直线与所成角的正切值.参考答案:解:(1)连结PO,、分别为SB、AB的中点,,,ks5u平面.-----3分(2),
,,
.
------3分(3),为异面直线与所成角.,,.在中,,,,异面直线SA与PD所成角的正切值为.---3分21.(本小题满分14分)已知在x=-1时有极值0。(1)求常数的值;
(2)求的单调区间。参考答案:解:(1),由题知:
联立<1>、<2>有:或………………4分
当时,
这说明此时为增函数,无极值,舍去
………………6分
当时,
故方程有根或+0-0+↑极大值↓极小值↑
由表可见,当时,有极小值0,故符合题意
…………9分
(2)由上表可知:的减函数区间为
的增函数区间为或
………………12分略22.已知函数f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集为[﹣3,3].(Ⅰ)解不等式:f(x)+f(x+2)>0;(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证:++≥3.参考答案:【考点】R6:不等式的证明.【分析】(Ⅰ)利用已知条件,转化不等式为绝对值不等式,求m的值,分类讨论,即可解不等式:f(x)+f(x+2)>0;(Ⅱ)直接利用柯西不等式,即可证明结论.【解答】解:(Ⅰ)因为f(x+2)=m﹣|x|,f(x+2)≥0等价于|x|≤m,由|x|≤m有解,得m≥0,且其解集为{x|﹣m≤x≤m}.又f(x+2)≥0的解集为[﹣3,3],故m=3.所以f(x)+f(x+2)>0可化为:3﹣|x﹣2|+3﹣|x|>0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗保健票据处理办法
- 餐饮业电梯施工安装工程合同
- 智能建筑网线铺设协议
- 科技期刊数字化出版技术指南
- 绿色建筑招投标法规体系精讲
- 城市交通监理管理规范
- 大型设备焊工劳动合同
- 物业维修技术员定向就业
- 船舶制造工程招投标资料模板
- 旅游集团的民主管理
- DB11-T 1796-2020文物建筑三维信息采集技术规程
- 蓝色卡通班委竞选主题班会PPT模板
- 脚手架及模板工程安全培训课件
- 遗传性痉挛性截瘫duwanliang
- 脑梗死标准病历、病程记录、出院记录模板
- 突发性耳聋病人的心理护理
- 糖尿病肾病护理PPT课件
- 斗首奥语精解
- 海康威视视频车位诱导与反向寻车系统解决方案
- 双机热备RoseHA8.9+oracle1164位配置方法
- 物业公司小区业主满意度调查表(共5页)
评论
0/150
提交评论